Accès gratuit
Numéro
Med Sci (Paris)
Volume 34, Numéro 10, Octobre 2018
Page(s) 813 - 819
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2018215
Publié en ligne 19 novembre 2018
  1. Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistanc against viruses in prokaryotes. Science 2007 ; 315 : 1709–1712. [CrossRef] [Google Scholar]
  2. Ishino Y, Shinagawa H, Makino K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 1987 ; 169 : 5429–5433. [CrossRef] [PubMed] [Google Scholar]
  3. Barrangou R. CRISPR-Cas systems and RNA-guided interference. Wiley Interdiscip Rev RNA 2013 ; 4 : 267–278. [CrossRef] [PubMed] [Google Scholar]
  4. Mojica FJM, Díez-Villaseñor C, García-Martínez J, et al. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 2005 ; 60 : 174–182. [CrossRef] [PubMed] [Google Scholar]
  5. Koonin EV, Makarova KS, Zhang F. Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol 2017 ; 37 : 67–78. [CrossRef] [PubMed] [Google Scholar]
  6. Brouns SJJ, Jore MM, Lundgren M, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 2008 ; 321 : 960–964. [CrossRef] [Google Scholar]
  7. Tremblay JP. CRISPR, un système qui permet de corriger ou de modifier l’expression de gènes responsables de maladies héréditaires. Med Sci (Paris) 2015 ; 31 : 1014–1022. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  8. Garneau JE, Dupuis ME, Villion M, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 2010 ; 468 : 67–71. [CrossRef] [PubMed] [Google Scholar]
  9. Nuñez JK, Lee ASY, Engelman A, et al. Integrase-mediated spacer acquisition during CRISPR–Cas adaptive immunity. Nature 2015 ; 519 : 193–198. [CrossRef] [PubMed] [Google Scholar]
  10. Deveau H, Barrangou R, Garneau JE, et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol 2008 ; 190 : 1390–1400. [CrossRef] [PubMed] [Google Scholar]
  11. Mojica FJM, Díez-Villaseñor C, García-Martínez J, et al. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 2009 ; 155 : 733–740. [CrossRef] [PubMed] [Google Scholar]
  12. Hynes AP, Villion M, Moineau S. Adaptation in bacterial CRISPR-Cas immunity can be driven by defective phages. Nat Commun 2014 ; 5 : 467–477. [CrossRef] [Google Scholar]
  13. Hynes AP, Lemay M, Trudel L, et al. Detecting natural adaptation of the Streptococcus thermophilus CRISPR-Cas systems in research and classroom settings. Nat Protoc 2017 ; 12 : 547–565. [CrossRef] [PubMed] [Google Scholar]
  14. Hynes AP, Labrie SJ, Moineau S. Programming native CRISPR arrays for the generation of targeted immunity. MBio 2016 ; 7 : e00202–e00216. [CrossRef] [PubMed] [Google Scholar]
  15. Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9. Science 2013 ; 339 : 823–826. [CrossRef] [PubMed] [Google Scholar]
  16. Qi LS, Larson MH, Gilbert LA, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 2013 ; 152 : 1173–1183. [CrossRef] [PubMed] [Google Scholar]
  17. Hilton IB, D’Ippolito AM, Vockley CM, et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol 2015 ; 33 : 510–517. [CrossRef] [PubMed] [Google Scholar]
  18. Yosef I, Manor M, Kiro R, et al. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. Proc Natl Acad Sci USA 2015 ; 112 : 7267–7272. [CrossRef] [Google Scholar]
  19. Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013 ; 339 : 819–823. [CrossRef] [PubMed] [Google Scholar]
  20. Yin H, Song CQ, Dorkin JR, et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat Biotechnol 2016 ; 34 : 328–333. [CrossRef] [PubMed] [Google Scholar]
  21. Kim E, Koo T, Park SW, et al. In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat Commun 2017 ; 8 : 1–12. [CrossRef] [Google Scholar]
  22. Hoffman EP, Brown RH, Kunkel LM. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 1987 ; 51 : 919–928. [CrossRef] [PubMed] [Google Scholar]
  23. Nelson CE, Hakim CH, Ousterout DG, et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 2016 ; 351 : 403–407. [CrossRef] [PubMed] [Google Scholar]
  24. Bengtsson NE, Hall JK, Odom GL, et al. Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nat Commun 2017 ; 8 : 14454. [CrossRef] [PubMed] [Google Scholar]
  25. Yang S, Chang R, Yang H, et al. CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington’s disease. J Clin Invest 2017 ; 127 : 2719–2724. [CrossRef] [PubMed] [Google Scholar]
  26. Yin C, Zhang T, Qu X, et al. In Vivo Excision of HIV-1 provirus by saCas9 and multiplex single-guide RNAs in animal models. Mol Ther 2017 ; 25 : 1168–1186. [CrossRef] [PubMed] [Google Scholar]
  27. Rauch BJ, Silvis MR, Hultquist JF, et al. Inhibition of CRISPR-Cas9 with bacteriophage proteins. Cell 2017 ; 168 : 150–158. [CrossRef] [PubMed] [Google Scholar]
  28. Hynes AP, Rousseau GM, Lemay ML, et al. An anti-CRISPR from a virulent streptococcal phage inhibits Streptococcus pyogenes Cas9. Nat Microbiol 2017 ; 2 : 1374–1380. [CrossRef] [PubMed] [Google Scholar]
  29. Cyranoski D. CRISPR gene-editing tested in a person for the first time. Nature 2016 ; 539 : 479. [CrossRef] [PubMed] [Google Scholar]
  30. Reardon S. First CRISPR clinical trial gets green light from US panel. Nature 2016 ; 539 : 479. [CrossRef] [PubMed] [Google Scholar]
  31. Liang P, Xu Y, Zhang X, et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 2015 ; 6 : 363–372. [CrossRef] [PubMed] [Google Scholar]
  32. Rho M, Wu YW, Tang H, et al. Diverse CRISPRs evolving in human microbiomes. PLoS Genet 2012 ; 8 : e1002441. [CrossRef] [PubMed] [Google Scholar]
  33. Hoe N, Nakashima K, Grigsby D, et al. Rapid molecular genetic subtyping of serotype M1 group A Streptococcus strains. Emerg Infect Dis 1999 ; 5 : 254–263. [CrossRef] [PubMed] [Google Scholar]
  34. Shariat N, Dudley EG. CRISPRs: molecular signatures used for pathogen subtyping. Appl Environ Microbiol 2014 ; 80 : 4309. [CrossRef] [Google Scholar]
  35. Shariat N, DiMarzio MJ, Yin S, et al. The combination of CRISPR-MVLST and PFGE provides increased discriminatory power for differentiating human clinical isolates of Salmonella enterica subsp. enterica serovar Enteritidis. Food Microbiol 2013 ; 34 : 164–173. [CrossRef] [Google Scholar]
  36. Zheng H, Hu Y, Li Q, et al. Subtyping Salmonella enterica serovar Derby with multilocus sequence typing (MLST) and clustered regularly interspaced short palindromic repeats (CRISPRs). Food Control 2017 ; 73 : 474–484. [CrossRef] [Google Scholar]
  37. Lück C, Brzuszkiewicz E, Rydzewski K, et al. Subtyping of the Legionella pneumophila “Ulm” outbreak strain using the CRISPR-Cas system. Int J Med Microbiol 2015 ; 305 : 828–837. [CrossRef] [PubMed] [Google Scholar]
  38. Turnbaugh PJ, Ley RE, Hamady M, et al. The human microbiome project. Nature 2007 ; 449 : 804–810. [CrossRef] [PubMed] [Google Scholar]
  39. Pride DT, Sun CL, Salzman J, et al. Analysis of streptococcal CRISPRs from human saliva reveals substantial sequence diversity within and between subjects over time. Genome Res 2011 ; 21 : 126–136. [CrossRef] [PubMed] [Google Scholar]
  40. Stokes HW, Gillings MR, CW C, et al. Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens. FEMS Microbiol Rev 2011 ; 35 : 790–819. [CrossRef] [PubMed] [Google Scholar]
  41. Saunders JR, Allison H, James CE, et al. Phage-mediated transfer of virulence genes. J Chem Technol Biotechnol 2001 ; 76 : 662–666. [CrossRef] [Google Scholar]
  42. Minot S, Sinha R, Chen J, et al. The human gut virome: Inter-individual variation and dynamic response to diet. Genome Res 2011 ; 21 : 1616–1625. [CrossRef] [PubMed] [Google Scholar]
  43. Van Belkum A, Soriaga LB, LaFave MC, et al. Phylogenetic distribution of CRISPR-Cas systems in antibiotic-resistant Pseudomonas aeruginosa. MBio 2015 ; 6 : 1–13. [CrossRef] [Google Scholar]
  44. La Gilgenkrantz H. révolution des CRISPR est en marche. Med Sci (Paris) 2014 ; 30 : 1066–1069. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  45. Jordan B. Les débuts de CRISPR en thérapie génique. Med Sci (Paris) 2016 ; 32 : 1035–1037. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.