Open Access
Numéro |
Med Sci (Paris)
Volume 34, Numéro 10, Octobre 2018
|
|
---|---|---|
Page(s) | 806 - 812 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2018206 | |
Publié en ligne | 19 novembre 2018 |
- Demouveaux B, Gouyer V, Gottrand F, et al. Gel-forming mucin interactome drives mucus viscoelasticity. Adv Colloid Interface Sci 2018 ; 252 : 69–82. [CrossRef] [PubMed] [Google Scholar]
- Ma J, Rubin BK, Voynow JA. Mucins, mucus, and goblet cells. Chest 2018 ; 154 : 169–176. [CrossRef] [PubMed] [Google Scholar]
- Desseyn JL, Aubert JP, Porchet N, et al. Evolution of the large secreted gel-forming mucins. Mol Biol Evol 2000 ; 17 : 1175–1184. [CrossRef] [PubMed] [Google Scholar]
- Desseyn JL, Clavereau I, Laine A. Cloning, chromosomal localization and characterization of the murine mucin gene orthologous to human MUC4. Eur J Biochem 2002 ; 269 : 3150–3159. [CrossRef] [PubMed] [Google Scholar]
- Desseyn JL, Laine A. Characterization of mouse Muc6 and evidence of conservation of the gel-forming mucin gene cluster between human and mouse. Genomics 2003 ; 81 : 433–436. [CrossRef] [PubMed] [Google Scholar]
- Desseyn JL. Mucin CYS domains are ancient and highly conserved modules that evolved in concert. Mol Phylogenet Evol 2009 ; 52 : 284–292. [Google Scholar]
- Gouyer V, Dubuquoy L, , Robbe-Masselot C, et al. Delivery of a mucin domain enriched in cysteine residues strengthens the intestinal mucous barrier. Sci Rep 2015 ; 5 : 9577. [CrossRef] [PubMed] [Google Scholar]
- Desseyn JL, Gouyer V, Gottrand F. Modification à façon des propriétés physiques du mucus : preuve de concept et applications potentielles. Med Sci (Paris) 2015 ; 31 : 1063–1066. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Robbe-Masselot C, Capon C, Maes E, et al. Evidence of regio-specific glycosylation in human intestinal mucins: presence of an acidic gradient along the intestinal tract. J Biol Chem 2003 ; 278 : 46337–46348. [CrossRef] [PubMed] [Google Scholar]
- Corfield AP. Mucins: a biologically relevant glycan barrier in mucosal protection. Biochim Biophys Acta 2015 ; 1850 : 236–252. [CrossRef] [PubMed] [Google Scholar]
- Asker N, Axelsson MAB, Olofsson SO, et al. Dimerization of the human MUC2 mucin in the endoplasmic reticulum is followed by a N-glycosylation-dependent transfer of the mono- and dimers to the Golgi apparatus. J Biol Chem 1998 ; 273 : 18857–18863. [CrossRef] [PubMed] [Google Scholar]
- Bell SL, Xu G, Forstner JF. Role of the cystine-knot motif at the C-terminus of rat mucin protein Muc2 in dimer formation and secretion. Biochem J 2001 ; 357 : 203–209. [CrossRef] [PubMed] [Google Scholar]
- Sheehan JK, Kirkham S, Howard M, et al. Identification of molecular intermediates in the assembly pathway of the MUC5AC mucin. J Biol Chem 2004 ; 279 : 15698–15705. [CrossRef] [PubMed] [Google Scholar]
- Ridley CE, Kouvatsos N, Raynal B, et al. Assembly of the respiratory mucin MUC5B: a new model for a gel-forming mucin. J Biol Chem 2014 ; 289 : 16409–16420. [CrossRef] [PubMed] [Google Scholar]
- Godl K, Johansson ME V, Lidell ME, et al. The N terminus of the MUC2 mucin forms trimers that are held together within a trypsin-resistant core fragment. J Biol Chem 2002 ; 277 : 47248–47256. [CrossRef] [PubMed] [Google Scholar]
- Wickström C, , Carlstedt I. N-terminal cleavage of the salivary MUC5B mucin: analogy with the von Willebrand propolypeptide?. J Biol Chem. 2001 ; 276 : 47116–47121. [CrossRef] [PubMed] [Google Scholar]
- Recktenwald C V, , Hansson GC. The reduction-insensitive bonds of the MUC2 mucin are isopeptide bonds. J Biol Chem 2016 ; 291 : 13580–13590. [CrossRef] [PubMed] [Google Scholar]
- McCullagh CM, Jamieson AM, Blackwell J, et al. Viscoelastic properties of human tracheobronchial mucin in aqueous solution. Biopolymers 1995 ; 35 : 149–159. [CrossRef] [PubMed] [Google Scholar]
- Taylor C, Allen A, Dettmar PW, et al. The gel matrix of gastric mucus is maintained by a complex interplay of transient and nontransient associations. Biomacromolecules 2003 ; 4 : 922–927. [PubMed] [Google Scholar]
- Trillo-Muyo S, Nilsson HE, Recktenwald CV, et al. Granule-stored MUC5B mucins are packed by the non-covalent formation of N-terminal head-to-head tetramers. J Biol Chem 2018 ; 293 : 5746–5754. [CrossRef] [PubMed] [Google Scholar]
- Ridley CE, Kirkham S, Williamson SJ, et al. Biosynthesis of the polymeric gel-forming mucin MUC5B. Am J Phys Lung Cell Mol Phys 2016 ; 310 : L993–1002. [Google Scholar]
- Bastholm SK, Samson MH, Becher N, et al. Trefoil factor peptide 3 is positively correlated with the viscoelastic properties of the cervical mucus plug. Acta Obs Gynecol Scand 2017 ; 96 : 47–52. [CrossRef] [Google Scholar]
- Kovács T, Varga G, Erces D, et al. Dietary phosphatidylcholine supplementation attenuates inflammatory mucosal damage in a rat model of experimental colitis. Shock 2012 ; 38 : 177–185. [Google Scholar]
- Harada N, Iijima S, Kobayashi K, et al. Human IgGFc binding protein (FcgammaBP) in colonic epithelial cells exhibits mucin-like structure. J Biol Chem 1997 ; 272 : 15232–15241. [CrossRef] [PubMed] [Google Scholar]
- Wang X, Du M, Han H, et al. Boundary lubrication by associative mucin. Langmuir 2015 ; 31 : 4733–4740. [CrossRef] [PubMed] [Google Scholar]
- Hodges RR, Dartt DA. Tear film mucins: front line defenders of the ocular surface; comparison with airway and gastrointestinal tract mucins. Exp Eye Res 2013 ; 117 : 62–78. [CrossRef] [PubMed] [Google Scholar]
- Critchfield AS, Yao G, Jaishankar A, et al. Cervical mucus properties stratify risk for preterm birth. PLoS One 2013 ; 8 : e69528. [CrossRef] [PubMed] [Google Scholar]
- Gouyer V, Gottrand F, Desseyn JL. The extraordinarily complex but highly structured organization of intestinal mucus-gel unveiled in multicolor images. PLoS One 2011 ; 6 : e18761. [CrossRef] [PubMed] [Google Scholar]
- Johansson ME V, , Larsson JMH, Hansson GC. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc Natl Acad Sci USA 2011 ; 108 : 4659–4665. [CrossRef] [Google Scholar]
- Kamphuis JBJ, Mercier-Bonin M, , Eutamène H, et al. Mucus organisation is shaped by colonic content; a new view. Sci Rep 2017 ; 7 : 8527. [CrossRef] [PubMed] [Google Scholar]
- Verdugo P. Supramolecular dynamics of mucus. Cold Spring Harb Perspect Med 2012 ; 2 : a009597. [Google Scholar]
- Davies HS, Singh P, Deckert-Gaudig T, et al. Secondary Structure and Glycosylation of Mucus Glycoproteins by Raman Spectroscopies. Anal Chem 2016 ; 88 : 11609–11615. [CrossRef] [PubMed] [Google Scholar]
- Wagner CE, Turner BS, Rubinstein M, et al. A rheological study of the association and dynamics of MUC5AC gels. Biomacromolecules 2017 ; 18 : 3654–3664. [PubMed] [Google Scholar]
- Muchekehu RW, Quinton PM. A new role for bicarbonate secretion in cervico-uterine mucus release. J Physiol 2010 ; 588 : 2329–2342. [CrossRef] [PubMed] [Google Scholar]
- Celli JP, Turner BS, Afdhal NH, et al. Rheology of gastric mucin exhibits a pH-dependent sol-gel transition. Biomacromolecules 2007 ; 8 : 1580–1586. [PubMed] [Google Scholar]
- Brunelli R, Papi M, Arcovito G, et al. Globular structure of human ovulatory cervical mucus. FASEB J. 2007 ; 21 : 3872–3876. [CrossRef] [PubMed] [Google Scholar]
- Wang Y-Y, Lai SK, Ensign LM, et al. The microstructure and bulk rheology of human cervicovaginal mucus are remarkably resistant to changes in pH. Biomacromolecules 2013 ; 14 : 4429–4435. [PubMed] [Google Scholar]
- Georgiades P, Pudney PDA, Thornton DJ, et al. Particle tracking microrheology of purified gastrointestinal mucins. Biopolymers 2014 ; 101 : 366–377. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.