Open Access
Med Sci (Paris)
Volume 34, Number 10, Octobre 2018
Page(s) 806 - 812
Section M/S Revues
Published online 19 November 2018
  1. Demouveaux B, Gouyer V, Gottrand F, et al. Gel-forming mucin interactome drives mucus viscoelasticity. Adv Colloid Interface Sci 2018 ; 252 : 69–82. [CrossRef] [PubMed] [Google Scholar]
  2. Ma J, Rubin BK, Voynow JA. Mucins, mucus, and goblet cells. Chest 2018 ; 154 : 169–176. [CrossRef] [PubMed] [Google Scholar]
  3. Desseyn JL, Aubert JP, Porchet N, et al. Evolution of the large secreted gel-forming mucins. Mol Biol Evol 2000 ; 17 : 1175–1184. [CrossRef] [PubMed] [Google Scholar]
  4. Desseyn JL, Clavereau I, Laine A. Cloning, chromosomal localization and characterization of the murine mucin gene orthologous to human MUC4. Eur J Biochem 2002 ; 269 : 3150–3159. [CrossRef] [PubMed] [Google Scholar]
  5. Desseyn JL, Laine A. Characterization of mouse Muc6 and evidence of conservation of the gel-forming mucin gene cluster between human and mouse. Genomics 2003 ; 81 : 433–436. [CrossRef] [PubMed] [Google Scholar]
  6. Desseyn JL. Mucin CYS domains are ancient and highly conserved modules that evolved in concert. Mol Phylogenet Evol 2009 ; 52 : 284–292. [Google Scholar]
  7. Gouyer V, Dubuquoy L, , Robbe-Masselot C, et al. Delivery of a mucin domain enriched in cysteine residues strengthens the intestinal mucous barrier. Sci Rep 2015 ; 5 : 9577. [CrossRef] [PubMed] [Google Scholar]
  8. Desseyn JL, Gouyer V, Gottrand F. Modification à façon des propriétés physiques du mucus : preuve de concept et applications potentielles. Med Sci (Paris) 2015 ; 31 : 1063–1066. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  9. Robbe-Masselot C, Capon C, Maes E, et al. Evidence of regio-specific glycosylation in human intestinal mucins: presence of an acidic gradient along the intestinal tract. J Biol Chem 2003 ; 278 : 46337–46348. [CrossRef] [PubMed] [Google Scholar]
  10. Corfield AP. Mucins: a biologically relevant glycan barrier in mucosal protection. Biochim Biophys Acta 2015 ; 1850 : 236–252. [CrossRef] [PubMed] [Google Scholar]
  11. Asker N, Axelsson MAB, Olofsson SO, et al. Dimerization of the human MUC2 mucin in the endoplasmic reticulum is followed by a N-glycosylation-dependent transfer of the mono- and dimers to the Golgi apparatus. J Biol Chem 1998 ; 273 : 18857–18863. [CrossRef] [PubMed] [Google Scholar]
  12. Bell SL, Xu G, Forstner JF. Role of the cystine-knot motif at the C-terminus of rat mucin protein Muc2 in dimer formation and secretion. Biochem J 2001 ; 357 : 203–209. [CrossRef] [PubMed] [Google Scholar]
  13. Sheehan JK, Kirkham S, Howard M, et al. Identification of molecular intermediates in the assembly pathway of the MUC5AC mucin. J Biol Chem 2004 ; 279 : 15698–15705. [CrossRef] [PubMed] [Google Scholar]
  14. Ridley CE, Kouvatsos N, Raynal B, et al. Assembly of the respiratory mucin MUC5B: a new model for a gel-forming mucin. J Biol Chem 2014 ; 289 : 16409–16420. [CrossRef] [PubMed] [Google Scholar]
  15. Godl K, Johansson ME V, Lidell ME, et al. The N terminus of the MUC2 mucin forms trimers that are held together within a trypsin-resistant core fragment. J Biol Chem 2002 ; 277 : 47248–47256. [CrossRef] [PubMed] [Google Scholar]
  16. Wickström C, , Carlstedt I. N-terminal cleavage of the salivary MUC5B mucin: analogy with the von Willebrand propolypeptide?. J Biol Chem. 2001 ; 276 : 47116–47121. [CrossRef] [PubMed] [Google Scholar]
  17. Recktenwald C V, , Hansson GC. The reduction-insensitive bonds of the MUC2 mucin are isopeptide bonds. J Biol Chem 2016 ; 291 : 13580–13590. [CrossRef] [PubMed] [Google Scholar]
  18. McCullagh CM, Jamieson AM, Blackwell J, et al. Viscoelastic properties of human tracheobronchial mucin in aqueous solution. Biopolymers 1995 ; 35 : 149–159. [CrossRef] [PubMed] [Google Scholar]
  19. Taylor C, Allen A, Dettmar PW, et al. The gel matrix of gastric mucus is maintained by a complex interplay of transient and nontransient associations. Biomacromolecules 2003 ; 4 : 922–927. [PubMed] [Google Scholar]
  20. Trillo-Muyo S, Nilsson HE, Recktenwald CV, et al. Granule-stored MUC5B mucins are packed by the non-covalent formation of N-terminal head-to-head tetramers. J Biol Chem 2018 ; 293 : 5746–5754. [CrossRef] [PubMed] [Google Scholar]
  21. Ridley CE, Kirkham S, Williamson SJ, et al. Biosynthesis of the polymeric gel-forming mucin MUC5B. Am J Phys Lung Cell Mol Phys 2016 ; 310 : L993–1002. [Google Scholar]
  22. Bastholm SK, Samson MH, Becher N, et al. Trefoil factor peptide 3 is positively correlated with the viscoelastic properties of the cervical mucus plug. Acta Obs Gynecol Scand 2017 ; 96 : 47–52. [CrossRef] [Google Scholar]
  23. Kovács T, Varga G, Erces D, et al. Dietary phosphatidylcholine supplementation attenuates inflammatory mucosal damage in a rat model of experimental colitis. Shock 2012 ; 38 : 177–185. [Google Scholar]
  24. Harada N, Iijima S, Kobayashi K, et al. Human IgGFc binding protein (FcgammaBP) in colonic epithelial cells exhibits mucin-like structure. J Biol Chem 1997 ; 272 : 15232–15241. [CrossRef] [PubMed] [Google Scholar]
  25. Wang X, Du M, Han H, et al. Boundary lubrication by associative mucin. Langmuir 2015 ; 31 : 4733–4740. [CrossRef] [PubMed] [Google Scholar]
  26. Hodges RR, Dartt DA. Tear film mucins: front line defenders of the ocular surface; comparison with airway and gastrointestinal tract mucins. Exp Eye Res 2013 ; 117 : 62–78. [CrossRef] [PubMed] [Google Scholar]
  27. Critchfield AS, Yao G, Jaishankar A, et al. Cervical mucus properties stratify risk for preterm birth. PLoS One 2013 ; 8 : e69528. [CrossRef] [PubMed] [Google Scholar]
  28. Gouyer V, Gottrand F, Desseyn JL. The extraordinarily complex but highly structured organization of intestinal mucus-gel unveiled in multicolor images. PLoS One 2011 ; 6 : e18761. [CrossRef] [PubMed] [Google Scholar]
  29. Johansson ME V, , Larsson JMH, Hansson GC. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc Natl Acad Sci USA 2011 ; 108 : 4659–4665. [CrossRef] [Google Scholar]
  30. Kamphuis JBJ, Mercier-Bonin M, , Eutamène H, et al. Mucus organisation is shaped by colonic content; a new view. Sci Rep 2017 ; 7 : 8527. [CrossRef] [PubMed] [Google Scholar]
  31. Verdugo P. Supramolecular dynamics of mucus. Cold Spring Harb Perspect Med 2012 ; 2 : a009597. [Google Scholar]
  32. Davies HS, Singh P, Deckert-Gaudig T, et al. Secondary Structure and Glycosylation of Mucus Glycoproteins by Raman Spectroscopies. Anal Chem 2016 ; 88 : 11609–11615. [CrossRef] [PubMed] [Google Scholar]
  33. Wagner CE, Turner BS, Rubinstein M, et al. A rheological study of the association and dynamics of MUC5AC gels. Biomacromolecules 2017 ; 18 : 3654–3664. [PubMed] [Google Scholar]
  34. Muchekehu RW, Quinton PM. A new role for bicarbonate secretion in cervico-uterine mucus release. J Physiol 2010 ; 588 : 2329–2342. [CrossRef] [PubMed] [Google Scholar]
  35. Celli JP, Turner BS, Afdhal NH, et al. Rheology of gastric mucin exhibits a pH-dependent sol-gel transition. Biomacromolecules 2007 ; 8 : 1580–1586. [PubMed] [Google Scholar]
  36. Brunelli R, Papi M, Arcovito G, et al. Globular structure of human ovulatory cervical mucus. FASEB J. 2007 ; 21 : 3872–3876. [CrossRef] [PubMed] [Google Scholar]
  37. Wang Y-Y, Lai SK, Ensign LM, et al. The microstructure and bulk rheology of human cervicovaginal mucus are remarkably resistant to changes in pH. Biomacromolecules 2013 ; 14 : 4429–4435. [PubMed] [Google Scholar]
  38. Georgiades P, Pudney PDA, Thornton DJ, et al. Particle tracking microrheology of purified gastrointestinal mucins. Biopolymers 2014 ; 101 : 366–377. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.