Free Access
Issue
Med Sci (Paris)
Volume 34, October 2018
Cancer biomarkers
Page(s) 52 - 58
DOI https://doi.org/10.1051/medsci/201834f110
Published online 07 November 2018
  1. Hu E, et al. Identification of novel isoform-selective inhibitors within class I histone deacetylases. J Pharmacol Exp Ther 2003 ; 307 : 720–728. [CrossRef] [PubMed] [Google Scholar]
  2. Bertrand P.. Inside HDAC with HDAC inhibitors. Eur J Med Chem 2010 ; 45 : 2095–2116. [CrossRef] [PubMed] [Google Scholar]
  3. Auzzas L, et al. Non-natural macrocyclic inhibitors of histone deacetylases: design, synthesis, and activity. J Med Chem 2013 ; 53 : 8387–8399. [CrossRef] [Google Scholar]
  4. Bolden JE, et al. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 2006 ; 5 : 769–784. [CrossRef] [PubMed] [Google Scholar]
  5. Kouzarides T.. Histone acetylases and deacetylases in cell proliferation. Curr Opin Genet Dev 1999 ; 9 : 40–42. [CrossRef] [PubMed] [Google Scholar]
  6. Grant S, Easley C, Kirkpatrick P. Vorinostat. Nat Rev Drug Disc Discov 2007 ; 6 : 21–22. [CrossRef] [Google Scholar]
  7. Huang L.. Targeting histone deacetylases for the treatment of cancer and inflammatory diseases. J Cell Physiol 2006 ; 209 : 611–616. [CrossRef] [Google Scholar]
  8. Liu T, Kuljaca S, Tee A, Marshall GM. Histone deacetylase inhibitors: multifunctional anticancer agents. Cancer Treat Rev 2006 ; 32 : 157–165. [CrossRef] [PubMed] [Google Scholar]
  9. Minucci S, Pelicci PG. Histone deacetylase inhibitors and the promise of epigenetic and more treatments for cancer. Nat Rev Cancer 2006 ; 6 : 38–54. [CrossRef] [Google Scholar]
  10. Qui L, et al. Anti-tumour activity in vitro and in vivo of selective differentiating agents containing hydroxamate. Br J Cancer 1999 ; 80 : 1252–1258. [CrossRef] [PubMed] [Google Scholar]
  11. Parsons PG, et al. Tumour selectivity and transcriptional activation by azelaic bishydroxamic acid in human melanocytic cells. Biochem Pharmacol 1997 ; 53 : 1719–1724. [CrossRef] [PubMed] [Google Scholar]
  12. Ma X, et al. Histone deacetylase inhibitors current status and overview of recent clinical trials. Drugs 2009 ; 69 : 1911–1934. [CrossRef] [PubMed] [Google Scholar]
  13. Tang H, et al. Combinatiorial QSAR modeling of specificity and subtype selectivity of ligands binding to serotonin receptors 5HT1E and 5HT1F. J Chem Inf Model 2009 ; 49 : 461. [CrossRef] [PubMed] [Google Scholar]
  14. Zhao LL, Xiang YH, Song JL, Zhang ZY. A novel two-step QSAR modeling work flow to predict selectivity and activity of HDAC inhibitors. Bioorg Med Chem Lett 2003 ; 23 : 929–933. [CrossRef] [Google Scholar]
  15. Juvale DC, et al. 3D-QSAR of histone deacetylase inhibitors: hydroxamate analogues. Org Biomol Chem 2006 ; 4 : 2858–2868. [CrossRef] [PubMed] [Google Scholar]
  16. Xiang YH, Hou ZY, Zhang ZY. Pharmacophore and QSAR studies to design novel histone deacetylase 2 inhibitors. Chen Biol Drug Des 2012 ; 79 : 760–770. [CrossRef] [Google Scholar]
  17. Hou X, et al. Enhancing the sensitivity of pharmacophore-based virtual screening by incorporating customized ZBG features: a case study using histone deacetylase 8. J Chem Inf Model 2005. [Google Scholar]
  18. The Binding Database. Available at: https://www.bindingdb.org/bind/index.jsp. [Google Scholar]
  19. The ChEMBL Database. Available at: https://www.ebi.ac.uk/chembl/. [Google Scholar]
  20. Yap CW. PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J Comput Chem 2011 ; 32 : 1466–1474. [CrossRef] [PubMed] [Google Scholar]
  21. Klekota J, Roth FP. Chemical substructures that enrich for biological activity. Bioinformatics 2008 ; 24 : 2518–2525. [CrossRef] [PubMed] [Google Scholar]
  22. Chang CC, Lin CJ. LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2011 ; 2 : 27. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  23. Plewczynski D, Spieser SA, Koch U. Assessing different classification methods for virtual screening. J Chem Inf Model 2006 ; 46 : 1098–1106. [CrossRef] [PubMed] [Google Scholar]
  24. Watson P.. Naive Bayes classification using 2D pharmacophore feature triplet vectors. J Chem Inf Model 2008 ; 48 : 166–178. [CrossRef] [PubMed] [Google Scholar]
  25. Kauffman GW, Jurs PC. QSAR and k-nearest neighbor classification analysis of selective cyclooxygenase-2 inhibitors using topologically-based numerical descriptors. J Chem Inf Comput Sci 2011 ; 41 : 1553–1560. [CrossRef] [Google Scholar]
  26. Quinlan JR. C4.5: programs for machine learning. Morgan Kaufmann Publishers Inc: San Francisco, CA, 1993. [Google Scholar]
  27. Breiman L.. Random forests. Machine Learning 2001 ; 45 : 5–32. [CrossRef] [Google Scholar]
  28. Cortes C, Vapnik V. Support-vector networks. Mach Learn 1995 ; 20 : 273–297. [Google Scholar]
  29. Burges CJ. A tutorial on support vector machines for pattern recognition. Data Min. Knowl Discov 1998 ; 2 : 121–167. [NASA ADS] [CrossRef] [Google Scholar]
  30. KNIME, version 2.7.4. Available at: http://www.knime.org/. [Google Scholar]
  31. Li J, Gramatica P. Classification and virtual screening of androgen receptor antagonists. J Chem Inf Model 201050, 861–874. [Google Scholar]
  32. Li J, Gramatica P. QSAR classification of estrogen receptor binders and prescreening of potential pleiotropic EDCs. SAR QSAR Environ Res 2010 ; 21 : 657–669. [CrossRef] [PubMed] [Google Scholar]
  33. Chen YJ, Cheng FX, Sun L, et al. Computational models to predict endocrine-disrupting chemical binding with androgen or oestrogen receptors. Ecotoxicology and Environmental Safety 2014 ; 110 : 280–287. [CrossRef] [PubMed] [Google Scholar]
  34. Cheng F, Ikenaga Y, Zhou Y, et al. In silico assessment of chemical biodegradability. J Chem Inf Model 2012 ; 52 : 655–669. [CrossRef] [PubMed] [Google Scholar]
  35. Wanger JM, Hackanson B, Lubbert M, Jung M. Histone deacetylase(HDAC) inhibitors in recent clinical trials for cancer therapy. Clin Epigenet 2010 ; 1 : 117–136. [CrossRef] [Google Scholar]
  36. Tang H, Wang X, Huang X, et al. Novel inhibitors of human histone deacetylase (HDAC) identified by QSAR modeling of known inhibitors, virtual screening, and experimental validation. J Chem Inf Model 2009 ; 49 : 461–476. [CrossRef] [PubMed] [Google Scholar]
  37. Robey R, Chakraborty A, Basseville A, et al. Histone deacetylase inhibitors: emerging mechanisms of resistance. Mol Pharm 2011 ; 8 : 2021–2031. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.