Accès gratuit
Numéro
Med Sci (Paris)
Volume 34, October 2018
Cancer biomarkers
Page(s) 52 - 58
DOI https://doi.org/10.1051/medsci/201834f110
Publié en ligne 7 novembre 2018
  1. Hu E, et al. Identification of novel isoform-selective inhibitors within class I histone deacetylases. J Pharmacol Exp Ther 2003 ; 307 : 720–728. [CrossRef] [PubMed] [Google Scholar]
  2. Bertrand P.. Inside HDAC with HDAC inhibitors. Eur J Med Chem 2010 ; 45 : 2095–2116. [CrossRef] [PubMed] [Google Scholar]
  3. Auzzas L, et al. Non-natural macrocyclic inhibitors of histone deacetylases: design, synthesis, and activity. J Med Chem 2013 ; 53 : 8387–8399. [CrossRef] [Google Scholar]
  4. Bolden JE, et al. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 2006 ; 5 : 769–784. [CrossRef] [PubMed] [Google Scholar]
  5. Kouzarides T.. Histone acetylases and deacetylases in cell proliferation. Curr Opin Genet Dev 1999 ; 9 : 40–42. [CrossRef] [PubMed] [Google Scholar]
  6. Grant S, Easley C, Kirkpatrick P. Vorinostat. Nat Rev Drug Disc Discov 2007 ; 6 : 21–22. [CrossRef] [Google Scholar]
  7. Huang L.. Targeting histone deacetylases for the treatment of cancer and inflammatory diseases. J Cell Physiol 2006 ; 209 : 611–616. [CrossRef] [Google Scholar]
  8. Liu T, Kuljaca S, Tee A, Marshall GM. Histone deacetylase inhibitors: multifunctional anticancer agents. Cancer Treat Rev 2006 ; 32 : 157–165. [CrossRef] [PubMed] [Google Scholar]
  9. Minucci S, Pelicci PG. Histone deacetylase inhibitors and the promise of epigenetic and more treatments for cancer. Nat Rev Cancer 2006 ; 6 : 38–54. [CrossRef] [Google Scholar]
  10. Qui L, et al. Anti-tumour activity in vitro and in vivo of selective differentiating agents containing hydroxamate. Br J Cancer 1999 ; 80 : 1252–1258. [CrossRef] [PubMed] [Google Scholar]
  11. Parsons PG, et al. Tumour selectivity and transcriptional activation by azelaic bishydroxamic acid in human melanocytic cells. Biochem Pharmacol 1997 ; 53 : 1719–1724. [CrossRef] [PubMed] [Google Scholar]
  12. Ma X, et al. Histone deacetylase inhibitors current status and overview of recent clinical trials. Drugs 2009 ; 69 : 1911–1934. [CrossRef] [PubMed] [Google Scholar]
  13. Tang H, et al. Combinatiorial QSAR modeling of specificity and subtype selectivity of ligands binding to serotonin receptors 5HT1E and 5HT1F. J Chem Inf Model 2009 ; 49 : 461. [CrossRef] [PubMed] [Google Scholar]
  14. Zhao LL, Xiang YH, Song JL, Zhang ZY. A novel two-step QSAR modeling work flow to predict selectivity and activity of HDAC inhibitors. Bioorg Med Chem Lett 2003 ; 23 : 929–933. [CrossRef] [Google Scholar]
  15. Juvale DC, et al. 3D-QSAR of histone deacetylase inhibitors: hydroxamate analogues. Org Biomol Chem 2006 ; 4 : 2858–2868. [CrossRef] [PubMed] [Google Scholar]
  16. Xiang YH, Hou ZY, Zhang ZY. Pharmacophore and QSAR studies to design novel histone deacetylase 2 inhibitors. Chen Biol Drug Des 2012 ; 79 : 760–770. [CrossRef] [Google Scholar]
  17. Hou X, et al. Enhancing the sensitivity of pharmacophore-based virtual screening by incorporating customized ZBG features: a case study using histone deacetylase 8. J Chem Inf Model 2005. [Google Scholar]
  18. The Binding Database. Available at: https://www.bindingdb.org/bind/index.jsp. [Google Scholar]
  19. The ChEMBL Database. Available at: https://www.ebi.ac.uk/chembl/. [Google Scholar]
  20. Yap CW. PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J Comput Chem 2011 ; 32 : 1466–1474. [CrossRef] [PubMed] [Google Scholar]
  21. Klekota J, Roth FP. Chemical substructures that enrich for biological activity. Bioinformatics 2008 ; 24 : 2518–2525. [CrossRef] [PubMed] [Google Scholar]
  22. Chang CC, Lin CJ. LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2011 ; 2 : 27. [CrossRef] [Google Scholar]
  23. Plewczynski D, Spieser SA, Koch U. Assessing different classification methods for virtual screening. J Chem Inf Model 2006 ; 46 : 1098–1106. [CrossRef] [PubMed] [Google Scholar]
  24. Watson P.. Naive Bayes classification using 2D pharmacophore feature triplet vectors. J Chem Inf Model 2008 ; 48 : 166–178. [CrossRef] [PubMed] [Google Scholar]
  25. Kauffman GW, Jurs PC. QSAR and k-nearest neighbor classification analysis of selective cyclooxygenase-2 inhibitors using topologically-based numerical descriptors. J Chem Inf Comput Sci 2011 ; 41 : 1553–1560. [CrossRef] [Google Scholar]
  26. Quinlan JR. C4.5: programs for machine learning. Morgan Kaufmann Publishers Inc: San Francisco, CA, 1993. [Google Scholar]
  27. Breiman L.. Random forests. Machine Learning 2001 ; 45 : 5–32. [Google Scholar]
  28. Cortes C, Vapnik V. Support-vector networks. Mach Learn 1995 ; 20 : 273–297. [Google Scholar]
  29. Burges CJ. A tutorial on support vector machines for pattern recognition. Data Min. Knowl Discov 1998 ; 2 : 121–167. [Google Scholar]
  30. KNIME, version 2.7.4. Available at: http://www.knime.org/. [Google Scholar]
  31. Li J, Gramatica P. Classification and virtual screening of androgen receptor antagonists. J Chem Inf Model 201050, 861–874. [Google Scholar]
  32. Li J, Gramatica P. QSAR classification of estrogen receptor binders and prescreening of potential pleiotropic EDCs. SAR QSAR Environ Res 2010 ; 21 : 657–669. [CrossRef] [PubMed] [Google Scholar]
  33. Chen YJ, Cheng FX, Sun L, et al. Computational models to predict endocrine-disrupting chemical binding with androgen or oestrogen receptors. Ecotoxicology and Environmental Safety 2014 ; 110 : 280–287. [CrossRef] [PubMed] [Google Scholar]
  34. Cheng F, Ikenaga Y, Zhou Y, et al. In silico assessment of chemical biodegradability. J Chem Inf Model 2012 ; 52 : 655–669. [CrossRef] [PubMed] [Google Scholar]
  35. Wanger JM, Hackanson B, Lubbert M, Jung M. Histone deacetylase(HDAC) inhibitors in recent clinical trials for cancer therapy. Clin Epigenet 2010 ; 1 : 117–136. [CrossRef] [Google Scholar]
  36. Tang H, Wang X, Huang X, et al. Novel inhibitors of human histone deacetylase (HDAC) identified by QSAR modeling of known inhibitors, virtual screening, and experimental validation. J Chem Inf Model 2009 ; 49 : 461–476. [CrossRef] [PubMed] [Google Scholar]
  37. Robey R, Chakraborty A, Basseville A, et al. Histone deacetylase inhibitors: emerging mechanisms of resistance. Mol Pharm 2011 ; 8 : 2021–2031. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.