Free Access
Med Sci (Paris)
Volume 34, Number 5, Mai 2018
Page(s) 424 - 431
Section M/S Revues
Published online 13 June 2018
  1. La Roingeard P. gouttelette lipidique : un nouvel organite ?. Med Sci (Paris) 2013 ; 29 : 495–500. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  2. Ibrahim MM. Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev 2010 ; 11 : 11–18. [CrossRef] [PubMed] [Google Scholar]
  3. Zhang Y, Proenca R, Maffei M, et al. Positional cloning of the mouse obese gene and its human homologue. Nature 1994 ; 372 : 425–432. [CrossRef] [PubMed] [Google Scholar]
  4. de Luca C, Kowalski TJ, Zhang Y, et al. Complete rescue of obesity, diabetes, and infertility in db/db mice by neuron-specific LEPR-B transgenes. J Clin Invest 2005 ; 115 : 3484–3493. [CrossRef] [PubMed] [Google Scholar]
  5. Yamauchi T, Kamon J, Minokoshi Y, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 2002 ; 8 : 1288–1295. [CrossRef] [PubMed] [Google Scholar]
  6. Ohashi K, Shibata R, Murohara T, Ouchi N. Role of anti-inflammatory adipokines in obesity-related diseases. Trends Endocrinol Metab 2014 ; 25 : 348–355. [CrossRef] [PubMed] [Google Scholar]
  7. Cinti S, Mitchell G, Barbatelli G, et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res 2005 ; 46 : 2347–2355. [CrossRef] [PubMed] [Google Scholar]
  8. Giordano A, Murano I, Mondini E, et al. Obese adipocytes show ultrastructural features of stressed cells and die of pyroptosis. J Lipid Res 2013 ; 54 : 2423–2436. [CrossRef] [PubMed] [Google Scholar]
  9. Wueest S, Rapold RA, Rytka JM, et al. Basal lipolysis, not the degree of insulin resistance, differentiates large from small isolated adipocytes in high-fat fed mice. Diabetologia 2009 ; 52 : 541–546. [CrossRef] [PubMed] [Google Scholar]
  10. Jernas M, Palming J, Sjoholm K, et al. Separation of human adipocytes by size: hypertrophic fat cells display distinct gene expression. FASEB J 2006 ; 20 : 1540–1542. [CrossRef] [PubMed] [Google Scholar]
  11. Rodeheffer MS, Birsoy K, Friedman JM. Identification of white adipocyte progenitor cells in vivo. Cell 2008 ; 135 : 240–249. [CrossRef] [PubMed] [Google Scholar]
  12. Jeffery E, Wing A, Holtrup B, et al. The adipose tissue microenvironment regulates depot-specific adipogenesis in obesity. Cell Metab 2016 ; 24 : 142–150. [CrossRef] [PubMed] [Google Scholar]
  13. Wang QA, Tao C, Gupta RK, Scherer PE. Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat Med 2013 ; 19 : 1338–1344. [CrossRef] [PubMed] [Google Scholar]
  14. Kim SM, Lun M, Wang M, et al. Loss of white adipose hyperplastic potential is associated with enhanced susceptibility to insulin resistance. Cell Metab 2014 ; 20 : 1049–1058. [CrossRef] [PubMed] [Google Scholar]
  15. Spalding KL, Arner E, Westermark PO, et al. Dynamics of fat cell turnover in humans. Nature 2008 ; 453 : 783–787. [CrossRef] [PubMed] [Google Scholar]
  16. Berry R, Jeffery E, Rodeheffer MS. Weighing in on adipocyte precursors. Cell Metab 2014 ; 19 : 8–20. [CrossRef] [PubMed] [Google Scholar]
  17. Arner E, Westermark PO, Spalding KL, et al. Adipocyte turnover: relevance to human adipose tissue morphology. Diabetes 2010 ; 59 : 105–109. [CrossRef] [PubMed] [Google Scholar]
  18. Tang W, Zeve D, Suh JM, et al. White fat progenitor cells reside in the adipose vasculature. Science 2008 ; 322 : 583–586. [Google Scholar]
  19. Gupta RK, Mepani RJ, Kleiner S, et al. Zfp423 expression identifies committed preadipocytes and localizes to adipose endothelial and perivascular cells. Cell Metab 2012 ; 15 : 230–239. [CrossRef] [PubMed] [Google Scholar]
  20. Esteve D, Boulet N, Volat F, et al. Human white and brite adipogenesis is supported by MSCA1 and is impaired by immune cells. Stem Cells 2015 ; 33 : 1277–1291. [CrossRef] [PubMed] [Google Scholar]
  21. Gao H, Volat F, Sandhow L, et al. CD36 Is a marker of human adipocyte progenitors with pronounced adipogenic and triglyceride accumulation potential. Stem Cells 2017 ; 35 : 1799–1814. [CrossRef] [PubMed] [Google Scholar]
  22. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 1993 ; 259 : 87–91. [Google Scholar]
  23. Weisberg SP, McCann D, Desai M, et al. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003 ; 112 : 1796–1808. [CrossRef] [PubMed] [Google Scholar]
  24. Dalmas E, Venteclef N. Les macrophages : nouveaux modulateurs de la répartition de la masse grasse au cours de l’obésité. Med Sci (Paris) 2015 ; 31 : 1080–1082. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  25. Sun K, Tordjman J, Clement K, Scherer PE. Fibrosis and adipose tissue dysfunction. Cell Metab 2013 ; 18 : 470–477. [CrossRef] [PubMed] [Google Scholar]
  26. Vila IK, Badin PM, Marques MA, et al. Immune cell Toll-like receptor 4 mediates the development of obesity- and endotoxemia-associated adipose tissue fibrosis. Cell Rep 2014 ; 7 : 1116–1129. [CrossRef] [PubMed] [Google Scholar]
  27. Henegar C, Tordjman J, Achard V, et al. Adipose tissue transcriptomic signature highlights the pathological relevance of extracellular matrix in human obesity. Genome Biol 2008 ; 9 : R14. [CrossRef] [PubMed] [Google Scholar]
  28. Divoux A, Tordjman J, Lacasa D, et al. Fibrosis in human adipose tissue: composition, distribution, and link with lipid metabolism and fat mass loss. Diabetes 2010 ; 59 : 2817–2825. [CrossRef] [PubMed] [Google Scholar]
  29. Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci 2010 ; 123 : 4195–4200. [Google Scholar]
  30. O’Connor KC, Song H, Rosenzweig N, Jansen DA. Extracellular matrix substrata alter adipocyte yield and lipogenesis in primary cultures of stromal-vascular cells from human adipose. Biotechnol Lett 2003 ; 25 : 1967–1972. [Google Scholar]
  31. Spiegelman BM, Ginty CA. Fibronectin modulation of cell shape and lipogenic gene expression in 3T3-adipocytes. Cell 1983 ; 35 : 657–666. [CrossRef] [PubMed] [Google Scholar]
  32. Liu Y, Aron-Wisnewsky J, Marcelin G, et al. Accumulation and changes in composition of collagens in subcutaneous adipose tissue after bariatric surgery. J Clin Endocrinol Metab 2016 ; 101 : 293–304. [CrossRef] [PubMed] [Google Scholar]
  33. Zamarron BF, Mergian TA, Cho KW, et al. Macrophage proliferation sustains adipose tissue inflammation in formerly obese mice. Diabetes 2017 ; 66 : 392–406. [PubMed] [Google Scholar]
  34. Tomasek JJ, Gabbiani G, Hinz B, et al. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 2002 ; 3 : 349–363. [CrossRef] [PubMed] [Google Scholar]
  35. Lacasa D, Taleb S, Keophiphath M, et al. Macrophage-secreted factors impair human adipogenesis: involvement of proinflammatory state in preadipocytes. Endocrinology 2007 ; 148 : 868–877. [CrossRef] [PubMed] [Google Scholar]
  36. Keophiphath M, Achard V, Henegar C, et al. Macrophage-secreted factors promote a profibrotic phenotype in human preadipocytes. Mol Endocrinol 2009 ; 23 : 11–24. [Google Scholar]
  37. Bourlier V, Sengenes C, Zakaroff-Girard A, et al. TGFbeta family members are key mediators in the induction of myofibroblast phenotype of human adipose tissue progenitor cells by macrophages. PLoS One 2012 ; 7 : e31274. [CrossRef] [PubMed] [Google Scholar]
  38. Marcelin G, Ferreira A, Liu Y, et al. A PDGFRalpha-mediated switch toward CD9(high) adipocyte progenitors controls obesity-induced adipose tissue fibrosis. Cell Metab 2017 ; 25 : 673–685. [CrossRef] [PubMed] [Google Scholar]
  39. Khan T, Muise ES, Iyengar P, et al. Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI. Mol Cell Biol 2009 ; 29 : 1575–1591. [CrossRef] [PubMed] [Google Scholar]
  40. Gautier EL, Chow A, Spanbroek R, et al. Systemic analysis of PPARgamma in mouse macrophage populations reveals marked diversity in expression with critical roles in resolution of inflammation and airway immunity. J Immunol 2012 ; 189 : 2614–2624. [CrossRef] [PubMed] [Google Scholar]
  41. Chun TH, Hotary KB, Sabeh F, et al. A pericellular collagenase directs the 3-dimensional development of white adipose tissue. Cell 2006 ; 125 : 577–591. [CrossRef] [PubMed] [Google Scholar]
  42. Abdennour M, Reggio S, Le Naour G, et al. Association of adipose tissue and liver fibrosis with tissue stiffness in morbid obesity: links with diabetes and BMI loss after gastric bypass. J Clin Endocrinol Metab 2014 ; 99 : 898–907. [CrossRef] [PubMed] [Google Scholar]
  43. Pellegrinelli V, Heuvingh J, du Roure O, et al. Human adipocyte function is impacted by mechanical cues. J Pathol 2014 ; 233 : 183–195. [CrossRef] [PubMed] [Google Scholar]
  44. Bel Lassen P, Charlotte F, Liu Y, et al. The FAT score, a fibrosis score of adipose tissue: predicting weight-loss outcome after gastric bypass. J Clin Endocrinol Metab 2017; 102 : 2443–2453. [CrossRef] [PubMed] [Google Scholar]
  45. Tordjman J, Poitou C, Hugol D, et al. Association between omental adipose tissue macrophages and liver histopathology in morbid obesity: influence of glycemic status. J Hepatol 2009 ; 51 : 354–362. [CrossRef] [PubMed] [Google Scholar]
  46. Guglielmi V, Cardellini M, Cinti F, et al. Omental adipose tissue fibrosis and insulin resistance in severe obesity. Nutr Diabetes 2015 ; 5 : e175. [CrossRef] [PubMed] [Google Scholar]
  47. Lawler HM, Underkofler CM, Kern PA, et al. Adipose tissue hypoxia, inflammation, and fibrosis in obese insulin-sensitive and obese insulin-resistant subjects. J Clin Endocrinol Metab 2016 ; 101 : 1422–1428. [CrossRef] [PubMed] [Google Scholar]
  48. Levelt E, Pavlides M, Banerjee R, et al. Ectopic and visceral fat deposition in lean and obese patients with type 2 diabetes. J Am Coll Cardiol 2016 ; 68 : 53–63. [CrossRef] [PubMed] [Google Scholar]
  49. Venteclef N, Guglielmi V, Balse E, et al. Human epicardial adipose tissue induces fibrosis of the atrial myocardium through the secretion of adipo-fibrokines. Eur Heart J 2015 ; 36 : 795–805a. [CrossRef] [PubMed] [Google Scholar]
  50. Nicolas S, Chabry J, Guyon A, et al. L’adiponectine : un anti-inflammatoire et anti-dépresseur endogène ? Med Sci (Paris) 34; 417–423. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.