Free Access
Issue |
Med Sci (Paris)
Volume 34, Number 5, Mai 2018
|
|
---|---|---|
Page(s) | 432 - 438 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/20183405016 | |
Published online | 13 June 2018 |
- Verbov J. Celsus and his contributions to dermatology. Int J Dermatol 1978 ; 17 : 521–523. [CrossRef] [PubMed] [Google Scholar]
- Tauber AI. Metchnikoff and the phagocytosis theory. Nat Rev Mol Cell Biol 2003 ; 4 : 897–901. [CrossRef] [PubMed] [Google Scholar]
- Hodes GE, Kana V, Menard C, et al. Neuroimmune mechanisms of depression. Nat Neurosci 2015 ; 18 : 1386–1393. [CrossRef] [PubMed] [Google Scholar]
- Grace PM, Hutchinson MR, Maier SF, Watkins LR. Pathological pain and the neuroimmune interface. Nat Rev Immunol 2014 ; 14 : 217–231. [CrossRef] [PubMed] [Google Scholar]
- Ernsberger U. Role of neurotrophin signalling in the differentiation of neurons from dorsal root ganglia and sympathetic ganglia. Cell Tissue Res 2009 ; 336 : 349–384. [Google Scholar]
- Talbot S, Foster SL, Woolf CJ. Neuroimmunity: physiology and pathology. Annu Rev Immunol 2016 ; 34 : 421–447. [CrossRef] [PubMed] [Google Scholar]
- Veiga-Fernandes H, Mucida D. Neuro-immune interactions at barrier surfaces. Cell 2016 ; 165 : 801–811. [CrossRef] [PubMed] [Google Scholar]
- Candi E, Schmidt R, Melino G. The cornified envelope: a model of cell death in the skin. Nat Rev Mol Cell Biol 2005 ; 6 : 328–340. [CrossRef] [PubMed] [Google Scholar]
- Fuchs E. Scratching the surface of skin development. Nature 2007 ; 445 : 834–842. [CrossRef] [PubMed] [Google Scholar]
- Abraira VE, Ginty DD. The sensory neurons of touch. Neuron 2013 ; 79 : 618–639. [CrossRef] [PubMed] [Google Scholar]
- Moqrich A. Peripheral pain-sensing neurons: from molecular diversity to functional specialization. Cell Rep 2014 ; 6 : 245–246. [CrossRef] [PubMed] [Google Scholar]
- Abrahamsen B, Zhao J, Asante CO, et al. The cell and molecular basis of mechanical, cold, and inflammatory pain. Science 2008 ; 321 : 702–705. [Google Scholar]
- Zimmerman A, Bai L, Ginty DD. The gentle touch receptors of mammalian skin. Science 2014 ; 346 : 950–954. [Google Scholar]
- Le Pichon CE, Chesler AT. The functional and anatomical dissection of somatosensory subpopulations using mouse genetics. Front Neuroanat 2014 ; 8 : 21. [CrossRef] [PubMed] [Google Scholar]
- Caterina MJ, Leffler A, Malmberg AB, et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 2000 ; 288 : 306–313. [Google Scholar]
- Dhaka A, Murray AN, Mathur J, et al. TRPM8 is required for cold sensation in mice. Neuron 2007 ; 54 : 371–378. [CrossRef] [PubMed] [Google Scholar]
- Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell 2009 ; 139 : 267–284. [CrossRef] [PubMed] [Google Scholar]
- Usoskin D, Furlan A, Islam S, et al. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat Neurosci 2015 ; 18 : 145–153. [CrossRef] [PubMed] [Google Scholar]
- Reynders A, Mantilleri A, Malapert P, et al. Transcriptional profiling of cutaneous MRGPRD free nerve endings and C-LTMRs. Cell Rep 2015. pii : 52211–1247(15)00047–9. [Google Scholar]
- Doebel T, Voisin B, Nagao K. Langerhans cells : the macrophage in dendritic cell clothing. Trends Immunol 2017 ; 38 : 817–828. [CrossRef] [PubMed] [Google Scholar]
- Heath WR, Carbone FR. The skin-resident and migratory immune system in steady state and memory: innate lymphocytes, dendritic cells and T cells. Nat Immunol 2013 ; 14 : 978–985. [CrossRef] [PubMed] [Google Scholar]
- Pasparakis M, Haase I, Nestle FO. Mechanisms regulating skin immunity and inflammation. Nat Rev Immunol 2014 ; 14 : 289–301. [CrossRef] [PubMed] [Google Scholar]
- Bedoui S, Whitney PG, Waithman J, et al. Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells. Nat Immunol 2009 ; 10 : 488–495. [CrossRef] [PubMed] [Google Scholar]
- Guilliams M, Ginhoux F, Jakubzick C, et al. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat Rev Immunol 2014 ; 14 : 571–578. [CrossRef] [PubMed] [Google Scholar]
- Hoeffel G, Wang Y, Greter M, et al. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J Exp Med 2012 ; 209 : 1167–1181. [CrossRef] [PubMed] [Google Scholar]
- Hoeffel G, Ginhoux F. Ontogeny of tissue-resident macrophages. Front Immunol 2015 ; 6 : 486. [Google Scholar]
- Tamoutounour S, Guilliams M, Montanana Sanchis F, et al. Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin. Immunity 2013 ; 39 : 925–938. [CrossRef] [PubMed] [Google Scholar]
- Lawrence T, Natoli G. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol 2011 ; 11 : 750–761. [CrossRef] [PubMed] [Google Scholar]
- Wynn TA, Vannella KM. Macrophages in tissue repair, regeneration, and fibrosis. Immunity 2016 ; 44 : 450–462. [CrossRef] [PubMed] [Google Scholar]
- Galli SJ, Grimbaldeston M, Tsai M. Immunomodulatory mast cells: negative, as well as positive, regulators of immunity. Nat Rev Immunol 2008 ; 8 : 478–486. [CrossRef] [PubMed] [Google Scholar]
- Jameson J, Ugarte K, Chen N, et al. A role for skin gammadelta T cells in wound repair. Science 2002 ; 296 : 747–749. [Google Scholar]
- Ebbo M, Crinier A, Vely F, Vivier E. Innate lymphoid cells: major players in inflammatory diseases. Nat Rev Immunol 2017 ; 17 : 665–678. [CrossRef] [PubMed] [Google Scholar]
- Vivier E, Raulet DH, Moretta A, et al. Innate or adaptive immunity? The example of natural killer cells. Science 2011 ; 331 : 44–49. [Google Scholar]
- Roediger B, Kyle R, Yip KH, et al. Cutaneous immunosurveillance and regulation of inflammation by group 2 innate lymphoid cells. Nat Immunol 2013 ; 14 : 564–573. [CrossRef] [PubMed] [Google Scholar]
- Salimi M, Barlow JL, Saunders SP, et al. A role for IL-25 and IL-33-driven type-2 innate lymphoid cells in atopic dermatitis. J Exp Med 2013 ; 210 : 2939–2950. [CrossRef] [PubMed] [Google Scholar]
- Villanova F, Flutter B, Tosi I, et al. Characterization of innate lymphoid cells in human skin and blood demonstrates increase of NKp44+ ILC3 in psoriasis. J Invest Dermatol 2014 ; 134 : 984–991. [CrossRef] [PubMed] [Google Scholar]
- Abtin A, Jain R, Mitchell AJ, et al. Perivascular macrophages mediate neutrophil recruitment during bacterial skin infection. Nat Immunol 2014 ; 15 : 45–53. [CrossRef] [PubMed] [Google Scholar]
- Mantovani A, Cassatella MA, Costantini C, Jaillon S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol 2011 ; 11 : 519–531. [CrossRef] [PubMed] [Google Scholar]
- Jakubzick CV, Randolph GJ, Henson PM. Monocyte differentiation and antigen-presenting functions. Nat Rev Immunol 2017 ; 17 : 349–362. [CrossRef] [PubMed] [Google Scholar]
- Belkaid Y, Tamoutounour S. The influence of skin microorganisms on cutaneous immunity. Nat Rev Immunol 2016 ; 16 : 353–366. [CrossRef] [PubMed] [Google Scholar]
- Pinho-Ribeiro FA, Verri WA Jr., Chiu IM. Nociceptor sensory neuron-immune interactions in pain and inflammation. Trends immunol 2017 ; 38 : 5–19. [CrossRef] [PubMed] [Google Scholar]
- Jancso N, Jancso-Gabor A, Szolcsanyi J. Direct evidence for neurogenic inflammation and its prevention by denervation and by pretreatment with capsaicin. Br J Pharmacol Chemother 1967 ; 31 : 138–151. [Google Scholar]
- Brain SD, Williams TJ, Tippins JR, et al. Calcitonin gene-related peptide is a potent vasodilator. Nature 1985 ; 313 : 54–56. [CrossRef] [PubMed] [Google Scholar]
- Voisin T, Bouvier A, Chiu IM. Neuro-immune interactions in allergic diseases: novel targets for therapeutics. Int Immunol 2017 ; 29 : 247–261. [CrossRef] [PubMed] [Google Scholar]
- Kurashige C, Hosono K, Matsuda H, et al. Roles of receptor activity-modifying protein 1 in angiogenesis and lymphangiogenesis during skin wound healing in mice. FASEB J 2014 ; 28 : 1237–1247. [CrossRef] [PubMed] [Google Scholar]
- Chan JK, Roth J, Oppenheim JJ, et al. Alarmins: awaiting a clinical response. J Clin Invest 2012 ; 122 : 2711–2719. [CrossRef] [PubMed] [Google Scholar]
- Veiga-Fernandes H, Freitas AA. the S(c)ensory immune system theory. Trends Immunol 2017 ; 38 : 777–788. [CrossRef] [PubMed] [Google Scholar]
- Chiu IM, Heesters BA, Ghasemlou N, et al. Bacteria activate sensory neurons that modulate pain and inflammation. Nature 2013 ; 501 : 52–57. [CrossRef] [PubMed] [Google Scholar]
- Kashem SW, Riedl MS, Yao C, et al. Nociceptive sensory fibers drive interleukin-23 production from CD301b+ dermal dendritic cells and drive protective cutaneous immunity. Immunity 2015 ; 43 : 515–526. [CrossRef] [PubMed] [Google Scholar]
- Riol-Blanco L, Ordovas-Montanes J, Perro M, et al. Nociceptive sensory neurons drive interleukin-23-mediated psoriasiform skin inflammation. Nature 2014 ; 510 : 157–161. [CrossRef] [PubMed] [Google Scholar]
- Liu B, Escalera J, Balakrishna S, et al. TRPA1 controls inflammation and pruritogen responses in allergic contact dermatitis. FASEB J 2013 ; 27 : 3549–3563. [CrossRef] [PubMed] [Google Scholar]
- Jarvikallio A, Harvima IT, Naukkarinen A. Mast cells, nerves and neuropeptides in atopic dermatitis and nummular eczema. Arch Dermatol Res 2003 ; 295 : 2–7. [CrossRef] [PubMed] [Google Scholar]
- Mikami N, Matsushita H, Kato T, et al. Calcitonin gene-related peptide is an important regulator of cutaneous immunity: effect on dendritic cell and T cell functions. J Immunol 2011 ; 186 : 6886–6893. [CrossRef] [PubMed] [Google Scholar]
- Gabanyi I, Muller PA, Feighery L, et al. Neuro-immune interactions drive tissue programming in intestinal macrophages. Cell 2016 ; 164 : 378–391. [CrossRef] [PubMed] [Google Scholar]
- Talbot S, Abdulnour RE, Burkett PR, et al. Silencing nociceptor neurons reduces allergic airway inflammation. Neuron 2015 ; 87 : 341–354. [CrossRef] [PubMed] [Google Scholar]
- Crinier A, Viant C, Girard-Madoux M, Vivier E. Les cellules lymphoïdes innées. Med Sci (Paris) 2017 ; 33 : 534–542. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.