Accès gratuit
Numéro |
Med Sci (Paris)
Volume 34, Numéro 5, Mai 2018
|
|
---|---|---|
Page(s) | 432 - 438 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/20183405016 | |
Publié en ligne | 13 juin 2018 |
- Verbov J. Celsus and his contributions to dermatology. Int J Dermatol 1978 ; 17 : 521–523. [CrossRef] [PubMed] [Google Scholar]
- Tauber AI. Metchnikoff and the phagocytosis theory. Nat Rev Mol Cell Biol 2003 ; 4 : 897–901. [CrossRef] [PubMed] [Google Scholar]
- Hodes GE, Kana V, Menard C, et al. Neuroimmune mechanisms of depression. Nat Neurosci 2015 ; 18 : 1386–1393. [CrossRef] [PubMed] [Google Scholar]
- Grace PM, Hutchinson MR, Maier SF, Watkins LR. Pathological pain and the neuroimmune interface. Nat Rev Immunol 2014 ; 14 : 217–231. [CrossRef] [PubMed] [Google Scholar]
- Ernsberger U. Role of neurotrophin signalling in the differentiation of neurons from dorsal root ganglia and sympathetic ganglia. Cell Tissue Res 2009 ; 336 : 349–384. [Google Scholar]
- Talbot S, Foster SL, Woolf CJ. Neuroimmunity: physiology and pathology. Annu Rev Immunol 2016 ; 34 : 421–447. [CrossRef] [PubMed] [Google Scholar]
- Veiga-Fernandes H, Mucida D. Neuro-immune interactions at barrier surfaces. Cell 2016 ; 165 : 801–811. [CrossRef] [PubMed] [Google Scholar]
- Candi E, Schmidt R, Melino G. The cornified envelope: a model of cell death in the skin. Nat Rev Mol Cell Biol 2005 ; 6 : 328–340. [CrossRef] [PubMed] [Google Scholar]
- Fuchs E. Scratching the surface of skin development. Nature 2007 ; 445 : 834–842. [CrossRef] [PubMed] [Google Scholar]
- Abraira VE, Ginty DD. The sensory neurons of touch. Neuron 2013 ; 79 : 618–639. [CrossRef] [PubMed] [Google Scholar]
- Moqrich A. Peripheral pain-sensing neurons: from molecular diversity to functional specialization. Cell Rep 2014 ; 6 : 245–246. [CrossRef] [PubMed] [Google Scholar]
- Abrahamsen B, Zhao J, Asante CO, et al. The cell and molecular basis of mechanical, cold, and inflammatory pain. Science 2008 ; 321 : 702–705. [Google Scholar]
- Zimmerman A, Bai L, Ginty DD. The gentle touch receptors of mammalian skin. Science 2014 ; 346 : 950–954. [Google Scholar]
- Le Pichon CE, Chesler AT. The functional and anatomical dissection of somatosensory subpopulations using mouse genetics. Front Neuroanat 2014 ; 8 : 21. [CrossRef] [PubMed] [Google Scholar]
- Caterina MJ, Leffler A, Malmberg AB, et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 2000 ; 288 : 306–313. [Google Scholar]
- Dhaka A, Murray AN, Mathur J, et al. TRPM8 is required for cold sensation in mice. Neuron 2007 ; 54 : 371–378. [CrossRef] [PubMed] [Google Scholar]
- Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell 2009 ; 139 : 267–284. [CrossRef] [PubMed] [Google Scholar]
- Usoskin D, Furlan A, Islam S, et al. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat Neurosci 2015 ; 18 : 145–153. [CrossRef] [PubMed] [Google Scholar]
- Reynders A, Mantilleri A, Malapert P, et al. Transcriptional profiling of cutaneous MRGPRD free nerve endings and C-LTMRs. Cell Rep 2015. pii : 52211–1247(15)00047–9. [Google Scholar]
- Doebel T, Voisin B, Nagao K. Langerhans cells : the macrophage in dendritic cell clothing. Trends Immunol 2017 ; 38 : 817–828. [CrossRef] [PubMed] [Google Scholar]
- Heath WR, Carbone FR. The skin-resident and migratory immune system in steady state and memory: innate lymphocytes, dendritic cells and T cells. Nat Immunol 2013 ; 14 : 978–985. [CrossRef] [PubMed] [Google Scholar]
- Pasparakis M, Haase I, Nestle FO. Mechanisms regulating skin immunity and inflammation. Nat Rev Immunol 2014 ; 14 : 289–301. [CrossRef] [PubMed] [Google Scholar]
- Bedoui S, Whitney PG, Waithman J, et al. Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells. Nat Immunol 2009 ; 10 : 488–495. [CrossRef] [PubMed] [Google Scholar]
- Guilliams M, Ginhoux F, Jakubzick C, et al. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat Rev Immunol 2014 ; 14 : 571–578. [CrossRef] [PubMed] [Google Scholar]
- Hoeffel G, Wang Y, Greter M, et al. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J Exp Med 2012 ; 209 : 1167–1181. [CrossRef] [PubMed] [Google Scholar]
- Hoeffel G, Ginhoux F. Ontogeny of tissue-resident macrophages. Front Immunol 2015 ; 6 : 486. [Google Scholar]
- Tamoutounour S, Guilliams M, Montanana Sanchis F, et al. Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin. Immunity 2013 ; 39 : 925–938. [CrossRef] [PubMed] [Google Scholar]
- Lawrence T, Natoli G. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol 2011 ; 11 : 750–761. [CrossRef] [PubMed] [Google Scholar]
- Wynn TA, Vannella KM. Macrophages in tissue repair, regeneration, and fibrosis. Immunity 2016 ; 44 : 450–462. [CrossRef] [PubMed] [Google Scholar]
- Galli SJ, Grimbaldeston M, Tsai M. Immunomodulatory mast cells: negative, as well as positive, regulators of immunity. Nat Rev Immunol 2008 ; 8 : 478–486. [CrossRef] [PubMed] [Google Scholar]
- Jameson J, Ugarte K, Chen N, et al. A role for skin gammadelta T cells in wound repair. Science 2002 ; 296 : 747–749. [Google Scholar]
- Ebbo M, Crinier A, Vely F, Vivier E. Innate lymphoid cells: major players in inflammatory diseases. Nat Rev Immunol 2017 ; 17 : 665–678. [CrossRef] [PubMed] [Google Scholar]
- Vivier E, Raulet DH, Moretta A, et al. Innate or adaptive immunity? The example of natural killer cells. Science 2011 ; 331 : 44–49. [Google Scholar]
- Roediger B, Kyle R, Yip KH, et al. Cutaneous immunosurveillance and regulation of inflammation by group 2 innate lymphoid cells. Nat Immunol 2013 ; 14 : 564–573. [CrossRef] [PubMed] [Google Scholar]
- Salimi M, Barlow JL, Saunders SP, et al. A role for IL-25 and IL-33-driven type-2 innate lymphoid cells in atopic dermatitis. J Exp Med 2013 ; 210 : 2939–2950. [CrossRef] [PubMed] [Google Scholar]
- Villanova F, Flutter B, Tosi I, et al. Characterization of innate lymphoid cells in human skin and blood demonstrates increase of NKp44+ ILC3 in psoriasis. J Invest Dermatol 2014 ; 134 : 984–991. [CrossRef] [PubMed] [Google Scholar]
- Abtin A, Jain R, Mitchell AJ, et al. Perivascular macrophages mediate neutrophil recruitment during bacterial skin infection. Nat Immunol 2014 ; 15 : 45–53. [CrossRef] [PubMed] [Google Scholar]
- Mantovani A, Cassatella MA, Costantini C, Jaillon S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol 2011 ; 11 : 519–531. [CrossRef] [PubMed] [Google Scholar]
- Jakubzick CV, Randolph GJ, Henson PM. Monocyte differentiation and antigen-presenting functions. Nat Rev Immunol 2017 ; 17 : 349–362. [CrossRef] [PubMed] [Google Scholar]
- Belkaid Y, Tamoutounour S. The influence of skin microorganisms on cutaneous immunity. Nat Rev Immunol 2016 ; 16 : 353–366. [CrossRef] [PubMed] [Google Scholar]
- Pinho-Ribeiro FA, Verri WA Jr., Chiu IM. Nociceptor sensory neuron-immune interactions in pain and inflammation. Trends immunol 2017 ; 38 : 5–19. [CrossRef] [PubMed] [Google Scholar]
- Jancso N, Jancso-Gabor A, Szolcsanyi J. Direct evidence for neurogenic inflammation and its prevention by denervation and by pretreatment with capsaicin. Br J Pharmacol Chemother 1967 ; 31 : 138–151. [Google Scholar]
- Brain SD, Williams TJ, Tippins JR, et al. Calcitonin gene-related peptide is a potent vasodilator. Nature 1985 ; 313 : 54–56. [CrossRef] [PubMed] [Google Scholar]
- Voisin T, Bouvier A, Chiu IM. Neuro-immune interactions in allergic diseases: novel targets for therapeutics. Int Immunol 2017 ; 29 : 247–261. [CrossRef] [PubMed] [Google Scholar]
- Kurashige C, Hosono K, Matsuda H, et al. Roles of receptor activity-modifying protein 1 in angiogenesis and lymphangiogenesis during skin wound healing in mice. FASEB J 2014 ; 28 : 1237–1247. [CrossRef] [PubMed] [Google Scholar]
- Chan JK, Roth J, Oppenheim JJ, et al. Alarmins: awaiting a clinical response. J Clin Invest 2012 ; 122 : 2711–2719. [CrossRef] [PubMed] [Google Scholar]
- Veiga-Fernandes H, Freitas AA. the S(c)ensory immune system theory. Trends Immunol 2017 ; 38 : 777–788. [CrossRef] [PubMed] [Google Scholar]
- Chiu IM, Heesters BA, Ghasemlou N, et al. Bacteria activate sensory neurons that modulate pain and inflammation. Nature 2013 ; 501 : 52–57. [CrossRef] [PubMed] [Google Scholar]
- Kashem SW, Riedl MS, Yao C, et al. Nociceptive sensory fibers drive interleukin-23 production from CD301b+ dermal dendritic cells and drive protective cutaneous immunity. Immunity 2015 ; 43 : 515–526. [CrossRef] [PubMed] [Google Scholar]
- Riol-Blanco L, Ordovas-Montanes J, Perro M, et al. Nociceptive sensory neurons drive interleukin-23-mediated psoriasiform skin inflammation. Nature 2014 ; 510 : 157–161. [CrossRef] [PubMed] [Google Scholar]
- Liu B, Escalera J, Balakrishna S, et al. TRPA1 controls inflammation and pruritogen responses in allergic contact dermatitis. FASEB J 2013 ; 27 : 3549–3563. [CrossRef] [PubMed] [Google Scholar]
- Jarvikallio A, Harvima IT, Naukkarinen A. Mast cells, nerves and neuropeptides in atopic dermatitis and nummular eczema. Arch Dermatol Res 2003 ; 295 : 2–7. [CrossRef] [PubMed] [Google Scholar]
- Mikami N, Matsushita H, Kato T, et al. Calcitonin gene-related peptide is an important regulator of cutaneous immunity: effect on dendritic cell and T cell functions. J Immunol 2011 ; 186 : 6886–6893. [CrossRef] [PubMed] [Google Scholar]
- Gabanyi I, Muller PA, Feighery L, et al. Neuro-immune interactions drive tissue programming in intestinal macrophages. Cell 2016 ; 164 : 378–391. [CrossRef] [PubMed] [Google Scholar]
- Talbot S, Abdulnour RE, Burkett PR, et al. Silencing nociceptor neurons reduces allergic airway inflammation. Neuron 2015 ; 87 : 341–354. [CrossRef] [PubMed] [Google Scholar]
- Crinier A, Viant C, Girard-Madoux M, Vivier E. Les cellules lymphoïdes innées. Med Sci (Paris) 2017 ; 33 : 534–542. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.