Modèles alternatifs
Free Access
Med Sci (Paris)
Volume 34, Number 4, Avril 2018
Modèles alternatifs
Page(s) 345 - 353
Section Revues
Published online 16 April 2018
  1. Taft WH. Special message, april 9, 1910. Online by Gerhard Peters and John T. Woolley, The American presidency project. [Google Scholar]
  2. Harshbarger JC, Slatick MS. Lesser known aquarium fish tumor models. Mar Biotechnol (NY) 2001; 3 : S115-29. [CrossRef] [PubMed] [Google Scholar]
  3. Driever W, Solnica-Krezel L, Schier AF, et al. A genetic screen for mutations affecting embryogenesis in zebrafish. Development 1996; 123 : 37-46. [PubMed] [Google Scholar]
  4. Haffter P, Granato M, Brand M, et al. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 1996; 123 : 1-36. [Google Scholar]
  5. Culp P, Nusslein-Volhard C, Hopkins N. High-frequency germ-line transmission of plasmid DNA sequences injected into fertilized zebrafish eggs. Proc Natl Acad Sci USA 1991; 88 : 7953-7. [CrossRef] [Google Scholar]
  6. Howe K, Clark MD, Torroja CF, et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature 2013; 496 : 498-503. [CrossRef] [PubMed] [Google Scholar]
  7. Stanton MF. Diethylnitrosamine-induced hepatic degeneration and neoplasia in the aquarium fish, Brachydanio rerio. J Natl Cancer Inst 1965; 34 : 117-30. [CrossRef] [PubMed] [Google Scholar]
  8. Amsterdam A, Lai K, Komisarczuk AZ, et al. Zebrafish Hagoromo mutants up-regulate fgf8 postembryonically and develop neuroblastoma. Mol Cancer Res 2009; 7 : 841-50. [CrossRef] [PubMed] [Google Scholar]
  9. Spitsbergen JM, Tsai HW, Reddy A, et al. Neoplasia in zebrafish (Danio rerio) treated with 7,12-dimethylbenz[a]anthracene by two exposure routes at different developmental stages. Toxicol Pathol 2000; 28 : 705-15. [CrossRef] [PubMed] [Google Scholar]
  10. Spitsbergen JM, Tsai HW, Reddy A, et al. Neoplasia in zebrafish (Danio rerio) treated with N-methyl-N’-nitro-N-nitrosoguanidine by three exposure routes at different developmentalstages. Toxicol Pathol 2000; 28 : 716-25. [CrossRef] [PubMed] [Google Scholar]
  11. Moore JL, Rush LM, Breneman C, et al. Zebrafish genomic instability mutants and cancer susceptibility. Genetics 2006; 174 : 585-600. [CrossRef] [PubMed] [Google Scholar]
  12. Lam SH, Wu YL, Vega VB, et al. Conservation of gene expression signatures between zebrafish and human liver tumors and tumor progression. Nat Biotechnol 2006; 24 : 73-5. [CrossRef] [PubMed] [Google Scholar]
  13. Zhang G, Hoersch S, Amsterdam A, et al. Highly aneuploid zebrafish malignant peripheral nerve sheath tumors have genetic alterations similar to human cancers. Proc Natl Acad Sci USA 2010; 107 : 16940-5. [CrossRef] [Google Scholar]
  14. Grunwald DJ, Streisinger G. Induction of recessive lethal and specific locus mutations in the zebrafish with ethyl nitrosourea. Genet Res 1992; 59 : 103-16. [CrossRef] [PubMed] [Google Scholar]
  15. Choorapoikayil S, Kuiper RV, de Bruin A, den Hertog J. Haploinsufficiency of the genes encoding the tumor suppressor Pten predisposes zebrafish to hemangiosarcoma. Dis Model Mech 2012; 5 : 241-7. [Google Scholar]
  16. Haramis AP, Hurlstone A, van der Velden Y, et al. Adenomatous polyposis coli-deficient zebrafish are susceptible to digestive tract neoplasia. EMBO Rep 2006; 7 : 444-9. [PubMed] [Google Scholar]
  17. Feitsma H, Kuiper RV, Korving J, et al. Zebrafish with mutations in mismatch repair genes develop neurofibromas and other tumors. Cancer Res 2008; 68 : 5059-66. [Google Scholar]
  18. Shive HR, West RR, Embree LJ, et al. brca2 in zebrafish ovarian development, spermatogenesis, and tumorigenesis. Proc Natl Acad Sci USA 2010; 107 : 19350-5. [CrossRef] [Google Scholar]
  19. Berghmans S, Murphey RD, Wienholds E, et al. tp53 mutant zebrafish develop malignant peripheral nerve sheath tumors. Proc Natl Acad Sci USA 2005; 102 : 407-12. [CrossRef] [Google Scholar]
  20. Patton EE, Widlund HR, Kutok JL, et al. BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Curr Biol 2005; 15 : 249-54. [CrossRef] [PubMed] [Google Scholar]
  21. Dovey M, White RM, Zon LI. Oncogenic NRAS cooperates with p53 loss to generate melanoma in zebrafish. Zebrafish 2009; 6 : 397-404. [CrossRef] [PubMed] [Google Scholar]
  22. Amsterdam A, Sadler KC, Lai K, et al. Many ribosomal protein genes are cancer genes in zebrafish. PLoS Biol 2004; 2 : E139. [CrossRef] [PubMed] [Google Scholar]
  23. Shin J, Padmanabhan A, de Groh ED, et al. Zebrafish neurofibromatosis type 1 genes have redundant functions in tumorigenesis and embryonic development. Dis Model Mech 2012; 5 : 881-94. [Google Scholar]
  24. Gjini E, Mansour MR, Sander JD, et al. A zebrafish model of myelodysplastic syndrome produced through tet2 genomic editing. Mol Cell Biol 2015; 35 : 789-804. [CrossRef] [PubMed] [Google Scholar]
  25. Solin SL, Shive HR, Woolard KD, et al. Rapid tumor induction in zebrafish by TALEN-mediated somatic inactivation of the retinoblastoma 1 tumor suppressor rb1. Sci Rep 2015; 5 : 13745. [CrossRef] [PubMed] [Google Scholar]
  26. Basten SG, Davis EE, Gillis AJ, et al. Mutations in LRRC50 predispose zebrafish and humans to seminomas. PLoS Genet 2013; 9 : e1003384. [CrossRef] [PubMed] [Google Scholar]
  27. Langenau DM, Traver D, Ferrando AA, et al. Myc-induced T cell leukemia in transgenic zebrafish. Science 2003; 299 : 887-90. [Google Scholar]
  28. Sabaawy HE, Azuma M, Embree LJ, et al. TEL-AML1 transgenic zebrafish model of precursor B cell acute lymphoblastic leukemia. Proc Natl Acad Sci USA 2006; 103 : 15166-71. [CrossRef] [Google Scholar]
  29. Li Z, Zheng W, Wang Z, et al. A transgenic zebrafish liver tumor model with inducible Myc expression reveals conserved Myc signatures with mammalian liver tumors. Dis Model Mech 2013; 6 : 414-23. [Google Scholar]
  30. Park SW, Davison JM, Rhee J, et al. Oncogenic KRAS induces progenitor cell expansion and malignant transformation in zebrafish exocrine pancreas. Gastroenterology 2008; 134 : 2080-90. [CrossRef] [PubMed] [Google Scholar]
  31. Zhu S, Lee JS, Guo F, et al. Activated ALK collaborates with MYCN in neuroblastoma pathogenesis. Cancer Cell 2012; 21: 362-73. [CrossRef] [PubMed] [Google Scholar]
  32. Chu CY, Chen CF, Rajendran RS, et al. Overexpression of Akt1 enhances adipogenesis and leads to lipoma formation in zebrafish. PLoS One 2012; 7 : e36474. [CrossRef] [PubMed] [Google Scholar]
  33. Lu JW, Yang WY, Tsai SM, et al. Liver-specific expressions of HBx and src in the p53 mutant trigger hepatocarcinogenesis in zebrafish. PLoS One 2013; 8 : e76951. [CrossRef] [PubMed] [Google Scholar]
  34. Leacock SW, Basse AN, Chandler GL, et al. A zebrafish transgenic model of Ewing’s sarcoma reveals conserved mediators of EWS-FLI1 tumorigenesis. Dis Model Mech 2012; 5 : 95-106. [Google Scholar]
  35. White RM, Sessa A, Burke C, et al. Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell 2008; 2 : 183-9. [Google Scholar]
  36. Moore JC, Langenau DM. Allograft cancer cell transplantation in zebrafish. Adv Exp Med Biol 2016; 916 : 265-87. [CrossRef] [PubMed] [Google Scholar]
  37. Stoletov K, Montel V, Lester RD, et al. High-resolution imaging of the dynamic tumor cell vascular interface in transparent zebrafish. Proc Natl Acad Sci USA 2007; 104 : 17406-11. [CrossRef] [Google Scholar]
  38. Lawson ND, Weinstein BM. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol 2002; 248 : 307-18. [CrossRef] [PubMed] [Google Scholar]
  39. Ignatius MS, Chen E, Elpek NM, et al. In vivo imaging of tumor-propagating cells, regional tumor heterogeneity, and dynamic cell movements in embryonal rhabdomyosarcoma. Cancer Cell 2012; 21 : 680-93. [CrossRef] [PubMed] [Google Scholar]
  40. Langenau DM, Keefe MD, Storer NY, et al. Effects of RAS on the genesis of embryonal rhabdomyosarcoma. Genes Dev 2007; 21 : 1382-95. [CrossRef] [PubMed] [Google Scholar]
  41. Haldi M, Ton C, Seng WL, McGrath P. Human melanoma cells transplanted into zebrafish proliferate, migrate, produce melanin, form masses and stimulate angiogenesis in zebrafish. Angiogenesis 2006; 9 : 139-51. [CrossRef] [PubMed] [Google Scholar]
  42. Vlecken DH, Bagowski CP. LIMK1 and LIMK2 are important for metastatic behavior and tumor cell-induced angiogenesis of pancreatic cancer cells. Zebrafish 2009; 6 : 433-39. [CrossRef] [PubMed] [Google Scholar]
  43. Eguiara A, Holgado O, Beloqui I, et al. Xenografts in zebrafish embryos as a rapid functional assay for breast cancer stem-like cell identification. Cell Cycle 2011; 10 : 3751-7. [CrossRef] [PubMed] [Google Scholar]
  44. Marques IJ, Weiss FU, Vlecken DH, et al. Metastatic behaviour of primary human tumours in a zebrafish xenotransplantation model. BMC Cancer 2009; 9 : 128. [CrossRef] [PubMed] [Google Scholar]
  45. White RM, Cech J, Ratanasirintrawoot S, et al. DHODH modulates transcriptional elongation in the neural crest and melanoma. Nature 2011; 471 : 518-22. [PubMed] [Google Scholar]
  46. Ridges S, Heaton WL, Joshi D, et al. Zebrafish screen identifies novel compound with selective toxicity against leukemia. Blood 2012; 119 : 5621-31. [Google Scholar]
  47. Wang C, Tao W, Wang Y, et al. Rosuvastatin, identified from a zebrafish chemical genetic screen for antiangiogenic compounds, suppresses the growth of prostate cancer. Eur Urol 2010; 58 : 418-26. [CrossRef] [PubMed] [Google Scholar]
  48. Zhang S, Cao Z, Tian H, et al. SKLB1002, a novel potent inhibitor of VEGF receptor 2 signaling, inhibits angiogenesis and tumor growth in vivo. Clin Cancer Res 2011; 17 : 4439-50. [CrossRef] [PubMed] [Google Scholar]
  49. Zhao H, Tang C, Cui K, Ang BT, Wong ST. A screening platform for glioma growth and invasion using bioluminescence imaging. Laboratory investigation. J Neurosurg 2009; 111 : 238-46. [CrossRef] [PubMed] [Google Scholar]
  50. Jung DW, Oh ES, Park SH, et al. A novel zebrafish human tumor xenograft model validated for anticancer drug screening. Mol Biosyst 2012; 8 : 1930-9. [Google Scholar]
  51. Fior R, Póvoa V, Mendes RV, et al. Single-cell functional and chemosensitive profiling of combinatorial colorectal therapy in zebrafish xenografts. Proc Natl Acad Sci USA 2017; 114 : E8234-43. [CrossRef] [Google Scholar]
  52. Dupret B, Angrand PO. L’ingénierie des génomes par les TALEN. Med Sci (Paris) 2014; 30 : 186-93. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  53. Gilgenkrantz H. La révolution des CRISPR est en marche. Med Sci (Paris) 2014; 30 : 1066-9. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  54. Ekker M, Akimenko MA. Le poisson zèbre (Danio rerio), un modèle en biologie du développement. Med Sci (Paris) 1991; 7 : 553-60. [Google Scholar]
  55. Kissa K, Murayama E, Herbomel P. Le danio zébré révèle l’odyssée des précurseurs hématopoïétiques au cours du développement des embryons de vertébrés. Med Sci (Paris) 2007; 23 : 698-700. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  56. Ryckebüsch L. Le modèle poisson zèbre : un modèle d’étude des dystrophies musculaires congénitales. Med Sci (Paris) 2015; 31 : 912-9. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.