Accès gratuit
Numéro |
Med Sci (Paris)
Volume 34, Numéro 4, Avril 2018
Modèles alternatifs
|
|
---|---|---|
Page(s) | 345 - 353 | |
Section | Revues | |
DOI | https://doi.org/10.1051/medsci/20183404016 | |
Publié en ligne | 16 avril 2018 |
- Taft WH. Special message, april 9, 1910. Online by Gerhard Peters and John T. Woolley, The American presidency project. http://www.presidency.ucsb.edu/ws/?pid=68499 [Google Scholar]
- Harshbarger JC, Slatick MS. Lesser known aquarium fish tumor models. Mar Biotechnol (NY) 2001; 3 : S115-29. [CrossRef] [PubMed] [Google Scholar]
- Driever W, Solnica-Krezel L, Schier AF, et al. A genetic screen for mutations affecting embryogenesis in zebrafish. Development 1996; 123 : 37-46. [PubMed] [Google Scholar]
- Haffter P, Granato M, Brand M, et al. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 1996; 123 : 1-36. [Google Scholar]
- Culp P, Nusslein-Volhard C, Hopkins N. High-frequency germ-line transmission of plasmid DNA sequences injected into fertilized zebrafish eggs. Proc Natl Acad Sci USA 1991; 88 : 7953-7. [CrossRef] [Google Scholar]
- Howe K, Clark MD, Torroja CF, et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature 2013; 496 : 498-503. [CrossRef] [PubMed] [Google Scholar]
- Stanton MF. Diethylnitrosamine-induced hepatic degeneration and neoplasia in the aquarium fish, Brachydanio rerio. J Natl Cancer Inst 1965; 34 : 117-30. [CrossRef] [PubMed] [Google Scholar]
- Amsterdam A, Lai K, Komisarczuk AZ, et al. Zebrafish Hagoromo mutants up-regulate fgf8 postembryonically and develop neuroblastoma. Mol Cancer Res 2009; 7 : 841-50. [CrossRef] [PubMed] [Google Scholar]
- Spitsbergen JM, Tsai HW, Reddy A, et al. Neoplasia in zebrafish (Danio rerio) treated with 7,12-dimethylbenz[a]anthracene by two exposure routes at different developmental stages. Toxicol Pathol 2000; 28 : 705-15. [CrossRef] [PubMed] [Google Scholar]
- Spitsbergen JM, Tsai HW, Reddy A, et al. Neoplasia in zebrafish (Danio rerio) treated with N-methyl-N’-nitro-N-nitrosoguanidine by three exposure routes at different developmentalstages. Toxicol Pathol 2000; 28 : 716-25. [CrossRef] [PubMed] [Google Scholar]
- Moore JL, Rush LM, Breneman C, et al. Zebrafish genomic instability mutants and cancer susceptibility. Genetics 2006; 174 : 585-600. [CrossRef] [PubMed] [Google Scholar]
- Lam SH, Wu YL, Vega VB, et al. Conservation of gene expression signatures between zebrafish and human liver tumors and tumor progression. Nat Biotechnol 2006; 24 : 73-5. [CrossRef] [PubMed] [Google Scholar]
- Zhang G, Hoersch S, Amsterdam A, et al. Highly aneuploid zebrafish malignant peripheral nerve sheath tumors have genetic alterations similar to human cancers. Proc Natl Acad Sci USA 2010; 107 : 16940-5. [CrossRef] [Google Scholar]
- Grunwald DJ, Streisinger G. Induction of recessive lethal and specific locus mutations in the zebrafish with ethyl nitrosourea. Genet Res 1992; 59 : 103-16. [CrossRef] [PubMed] [Google Scholar]
- Choorapoikayil S, Kuiper RV, de Bruin A, den Hertog J. Haploinsufficiency of the genes encoding the tumor suppressor Pten predisposes zebrafish to hemangiosarcoma. Dis Model Mech 2012; 5 : 241-7. [Google Scholar]
- Haramis AP, Hurlstone A, van der Velden Y, et al. Adenomatous polyposis coli-deficient zebrafish are susceptible to digestive tract neoplasia. EMBO Rep 2006; 7 : 444-9. [PubMed] [Google Scholar]
- Feitsma H, Kuiper RV, Korving J, et al. Zebrafish with mutations in mismatch repair genes develop neurofibromas and other tumors. Cancer Res 2008; 68 : 5059-66. [Google Scholar]
- Shive HR, West RR, Embree LJ, et al. brca2 in zebrafish ovarian development, spermatogenesis, and tumorigenesis. Proc Natl Acad Sci USA 2010; 107 : 19350-5. [CrossRef] [Google Scholar]
- Berghmans S, Murphey RD, Wienholds E, et al. tp53 mutant zebrafish develop malignant peripheral nerve sheath tumors. Proc Natl Acad Sci USA 2005; 102 : 407-12. [CrossRef] [Google Scholar]
- Patton EE, Widlund HR, Kutok JL, et al. BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Curr Biol 2005; 15 : 249-54. [CrossRef] [PubMed] [Google Scholar]
- Dovey M, White RM, Zon LI. Oncogenic NRAS cooperates with p53 loss to generate melanoma in zebrafish. Zebrafish 2009; 6 : 397-404. [CrossRef] [PubMed] [Google Scholar]
- Amsterdam A, Sadler KC, Lai K, et al. Many ribosomal protein genes are cancer genes in zebrafish. PLoS Biol 2004; 2 : E139. [CrossRef] [PubMed] [Google Scholar]
- Shin J, Padmanabhan A, de Groh ED, et al. Zebrafish neurofibromatosis type 1 genes have redundant functions in tumorigenesis and embryonic development. Dis Model Mech 2012; 5 : 881-94. [Google Scholar]
- Gjini E, Mansour MR, Sander JD, et al. A zebrafish model of myelodysplastic syndrome produced through tet2 genomic editing. Mol Cell Biol 2015; 35 : 789-804. [CrossRef] [PubMed] [Google Scholar]
- Solin SL, Shive HR, Woolard KD, et al. Rapid tumor induction in zebrafish by TALEN-mediated somatic inactivation of the retinoblastoma 1 tumor suppressor rb1. Sci Rep 2015; 5 : 13745. [CrossRef] [PubMed] [Google Scholar]
- Basten SG, Davis EE, Gillis AJ, et al. Mutations in LRRC50 predispose zebrafish and humans to seminomas. PLoS Genet 2013; 9 : e1003384. [CrossRef] [PubMed] [Google Scholar]
- Langenau DM, Traver D, Ferrando AA, et al. Myc-induced T cell leukemia in transgenic zebrafish. Science 2003; 299 : 887-90. [Google Scholar]
- Sabaawy HE, Azuma M, Embree LJ, et al. TEL-AML1 transgenic zebrafish model of precursor B cell acute lymphoblastic leukemia. Proc Natl Acad Sci USA 2006; 103 : 15166-71. [CrossRef] [Google Scholar]
- Li Z, Zheng W, Wang Z, et al. A transgenic zebrafish liver tumor model with inducible Myc expression reveals conserved Myc signatures with mammalian liver tumors. Dis Model Mech 2013; 6 : 414-23. [Google Scholar]
- Park SW, Davison JM, Rhee J, et al. Oncogenic KRAS induces progenitor cell expansion and malignant transformation in zebrafish exocrine pancreas. Gastroenterology 2008; 134 : 2080-90. [CrossRef] [PubMed] [Google Scholar]
- Zhu S, Lee JS, Guo F, et al. Activated ALK collaborates with MYCN in neuroblastoma pathogenesis. Cancer Cell 2012; 21: 362-73. [CrossRef] [PubMed] [Google Scholar]
- Chu CY, Chen CF, Rajendran RS, et al. Overexpression of Akt1 enhances adipogenesis and leads to lipoma formation in zebrafish. PLoS One 2012; 7 : e36474. [CrossRef] [PubMed] [Google Scholar]
- Lu JW, Yang WY, Tsai SM, et al. Liver-specific expressions of HBx and src in the p53 mutant trigger hepatocarcinogenesis in zebrafish. PLoS One 2013; 8 : e76951. [CrossRef] [PubMed] [Google Scholar]
- Leacock SW, Basse AN, Chandler GL, et al. A zebrafish transgenic model of Ewing’s sarcoma reveals conserved mediators of EWS-FLI1 tumorigenesis. Dis Model Mech 2012; 5 : 95-106. [Google Scholar]
- White RM, Sessa A, Burke C, et al. Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell 2008; 2 : 183-9. [Google Scholar]
- Moore JC, Langenau DM. Allograft cancer cell transplantation in zebrafish. Adv Exp Med Biol 2016; 916 : 265-87. [CrossRef] [PubMed] [Google Scholar]
- Stoletov K, Montel V, Lester RD, et al. High-resolution imaging of the dynamic tumor cell vascular interface in transparent zebrafish. Proc Natl Acad Sci USA 2007; 104 : 17406-11. [CrossRef] [Google Scholar]
- Lawson ND, Weinstein BM. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol 2002; 248 : 307-18. [CrossRef] [PubMed] [Google Scholar]
- Ignatius MS, Chen E, Elpek NM, et al. In vivo imaging of tumor-propagating cells, regional tumor heterogeneity, and dynamic cell movements in embryonal rhabdomyosarcoma. Cancer Cell 2012; 21 : 680-93. [CrossRef] [PubMed] [Google Scholar]
- Langenau DM, Keefe MD, Storer NY, et al. Effects of RAS on the genesis of embryonal rhabdomyosarcoma. Genes Dev 2007; 21 : 1382-95. [CrossRef] [PubMed] [Google Scholar]
- Haldi M, Ton C, Seng WL, McGrath P. Human melanoma cells transplanted into zebrafish proliferate, migrate, produce melanin, form masses and stimulate angiogenesis in zebrafish. Angiogenesis 2006; 9 : 139-51. [CrossRef] [PubMed] [Google Scholar]
- Vlecken DH, Bagowski CP. LIMK1 and LIMK2 are important for metastatic behavior and tumor cell-induced angiogenesis of pancreatic cancer cells. Zebrafish 2009; 6 : 433-39. [CrossRef] [PubMed] [Google Scholar]
- Eguiara A, Holgado O, Beloqui I, et al. Xenografts in zebrafish embryos as a rapid functional assay for breast cancer stem-like cell identification. Cell Cycle 2011; 10 : 3751-7. [CrossRef] [PubMed] [Google Scholar]
- Marques IJ, Weiss FU, Vlecken DH, et al. Metastatic behaviour of primary human tumours in a zebrafish xenotransplantation model. BMC Cancer 2009; 9 : 128. [CrossRef] [PubMed] [Google Scholar]
- White RM, Cech J, Ratanasirintrawoot S, et al. DHODH modulates transcriptional elongation in the neural crest and melanoma. Nature 2011; 471 : 518-22. [PubMed] [Google Scholar]
- Ridges S, Heaton WL, Joshi D, et al. Zebrafish screen identifies novel compound with selective toxicity against leukemia. Blood 2012; 119 : 5621-31. [Google Scholar]
- Wang C, Tao W, Wang Y, et al. Rosuvastatin, identified from a zebrafish chemical genetic screen for antiangiogenic compounds, suppresses the growth of prostate cancer. Eur Urol 2010; 58 : 418-26. [CrossRef] [PubMed] [Google Scholar]
- Zhang S, Cao Z, Tian H, et al. SKLB1002, a novel potent inhibitor of VEGF receptor 2 signaling, inhibits angiogenesis and tumor growth in vivo. Clin Cancer Res 2011; 17 : 4439-50. [CrossRef] [PubMed] [Google Scholar]
- Zhao H, Tang C, Cui K, Ang BT, Wong ST. A screening platform for glioma growth and invasion using bioluminescence imaging. Laboratory investigation. J Neurosurg 2009; 111 : 238-46. [CrossRef] [PubMed] [Google Scholar]
- Jung DW, Oh ES, Park SH, et al. A novel zebrafish human tumor xenograft model validated for anticancer drug screening. Mol Biosyst 2012; 8 : 1930-9. [Google Scholar]
- Fior R, Póvoa V, Mendes RV, et al. Single-cell functional and chemosensitive profiling of combinatorial colorectal therapy in zebrafish xenografts. Proc Natl Acad Sci USA 2017; 114 : E8234-43. [CrossRef] [Google Scholar]
- Dupret B, Angrand PO. L’ingénierie des génomes par les TALEN. Med Sci (Paris) 2014; 30 : 186-93. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Gilgenkrantz H. La révolution des CRISPR est en marche. Med Sci (Paris) 2014; 30 : 1066-9. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Ekker M, Akimenko MA. Le poisson zèbre (Danio rerio), un modèle en biologie du développement. Med Sci (Paris) 1991; 7 : 553-60. [Google Scholar]
- Kissa K, Murayama E, Herbomel P. Le danio zébré révèle l’odyssée des précurseurs hématopoïétiques au cours du développement des embryons de vertébrés. Med Sci (Paris) 2007; 23 : 698-700. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Ryckebüsch L. Le modèle poisson zèbre : un modèle d’étude des dystrophies musculaires congénitales. Med Sci (Paris) 2015; 31 : 912-9. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.