Free Access
Issue |
Med Sci (Paris)
Volume 34, Number 1, Janvier 2018
|
|
---|---|---|
Page(s) | 54 - 62 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/20183401014 | |
Published online | 31 January 2018 |
- Bange C. Claude Bernard. la méthode expérimentale, et la Société de Biologie. J Soc Biol 2009; 203: 235-47. [CrossRef] [PubMed] [Google Scholar]
- Karsenty G. Convergence between bone and energy homeostases: leptin regulation of bone mass. Cell Metab 2006; 4: 341-8. [CrossRef] [PubMed] [Google Scholar]
- Quarles LD. FGF23, PHEX, and MEPE regulation of phosphate homeostasis and skeletal mineralization. Am J Physiol Endocrinol Metab 2003; 285: E1-9. [CrossRef] [PubMed] [Google Scholar]
- Mosialou I, Shikkel S, Liu JM, et al. MC4R-dependent suppression of appetite by bone-derived lipocalin 2. Nature 2017; 543: 385-90. [CrossRef] [PubMed] [Google Scholar]
- Karsenty G, Ferron M. The contribution of bone to whole-organism physiology. Nature 2012; 481: 314-20. [CrossRef] [PubMed] [Google Scholar]
- Ferron M, Wei J, Yoshizawa T, et al. Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 2010; 142: 296-308. [CrossRef] [PubMed] [Google Scholar]
- Confavreux C, Ferron M. Le diabète est tombé sur un os. Med Sci (Paris) 2008; 24: 21-3. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Le Doan V, Marcil V. Ostéocalcine et métabolisme du glucose. Med Sci (Paris) 2017; 33: 417-22. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Karsenty G, Kronenberg, HM, Settembre C. Genetic control of bone formation. Annu Rev Cell Dev Biol 2009; 25: 629-48. [CrossRef] [PubMed] [Google Scholar]
- Harada S, Rodan G. Control of osteoblast function and regulation of bone mass. Nature 2003; 423: 349-55. [CrossRef] [PubMed] [Google Scholar]
- Teitelbaum SL. Bone resorption by osteoclasts. Science 2000; 289: 1504-8. [Google Scholar]
- Rigotti NA, Nussbaum SR, Herzog DB, Neer RM. Osteoporosis in women with anorexia nervosa. N Engl J Med 1984; 311: 1601-6. [Google Scholar]
- Zhao LJ, Liu YJ, Liu PY, et al. Relationship of obesity with osteoporosis. J Clin Endocrinol Metab 2007; 92: 1640-6. [CrossRef] [PubMed] [Google Scholar]
- Ferron M, Hinoi E, Karsenty G, Ducy P. Osteocalcin differentially regulates cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc Natl Acad Sci USA 2008; 105: 5266-70. [CrossRef] [Google Scholar]
- Lee NK, Sowa H, Hinoi E, et al. Endocrine regulation of energy metabolism by the skeleton. Cell 2007; 130: 456-69. [CrossRef] [PubMed] [Google Scholar]
- Ducy P, Desbois C, Boyce B, et al. Increased bone formation in osteocalcindeficient mice. Nature 1996; 382: 448-52. [CrossRef] [PubMed] [Google Scholar]
- Yoshizawa T, Hinoi E, Jung DY, et al. The transcription factor ATF4 regulates glucose metabolism in mice through its expression in osteoblasts. J Clin Invest 2009; 119: 2807-17. [CrossRef] [PubMed] [Google Scholar]
- Saftig P, Hunziker E, Wehmeyer O, et al. Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc Natl Acad Sci USA 1998; 95: 13453-8. [CrossRef] [Google Scholar]
- Scimeca JC, Franchi A, Trojani C, et al. The gene encoding the mouse homologue of the human osteoclast-specific 116-kDa V-ATPase subunit bears a deletion in osteosclerotic (oc/oc) mutants. Bone 2000; 26: 207-13. [CrossRef] [PubMed] [Google Scholar]
- Ferron M, McKee MD, Levine RL, et al. Intermittent injections of osteocalcin improve glucose metabolism and prevent type 2 diabetes in mice. Bone 2012; 50: 568-75. [CrossRef] [PubMed] [Google Scholar]
- Wei J, Ferron M, Clarke CJ, et al. Bone-specific insulin resistance disrupts whole-body glucose homeostasis via decreased osteocalcin activation. J Clin Invest 2014; 124: 1-13. [Google Scholar]
- Sabek OM, Nishimoto SK, Fraga D, et al. Osteocalcin effect on human beta cells mass and function. Endocrinology 2015; 156: 1143. [CrossRef] [PubMed] [Google Scholar]
- Chamouni A, Schreiweis C, Oury F. Bone, brain and beyond. Rev Endocr Metab Disord 2015; 16: 99-113. [PubMed] [Google Scholar]
- Wei J, Karsenty G. An overview of the metabolic functions of osteocalcin. Curr Osteoporos Rep 2015; 13: 180-5. [Google Scholar]
- Khosla S. Update on estrogens and the skeleton. J Clin Endocrinol Metab 2010; 95: 3569-77. [CrossRef] [PubMed] [Google Scholar]
- Khosla S. Update in male osteoporosis. J Clin Endocrinol Metab 2010; 95: 3-10. [CrossRef] [PubMed] [Google Scholar]
- Oury F. A crosstalk between bone and gonads. Ann NY Acad Sci 2012; 1260: 1-7. [CrossRef] [Google Scholar]
- Yoshikawa Y, Kode A, Xu L, et al. Genetic evidence points to an osteocalcinindependent influence of osteoblasts on energy metabolism. J Bone Miner Res 2011; 26: 2012-25. [Google Scholar]
- Oury F, Sumara G, Sumara O, et al. Endocrine regulation of male fertility by the skeleton. Cell 2011; 144: 796-809. [CrossRef] [PubMed] [Google Scholar]
- Kirmani S, Atkinson EJ, Melton LJ3rd, et al. Relationship of testosterone and osteocalcin levels during growth. J Bone Miner Res 2011; 26: 2212-6. [Google Scholar]
- Kanazawa I, Tanaka K, Ogawa N, et al. Undercarboxylated osteocalcin is positively associated with free testosterone in male patients with type 2 diabetes mellitus. Osteoporos Int 2013; 24: 1115-9. [CrossRef] [PubMed] [Google Scholar]
- Liao M, Guo X, Yu X, et al. Role of metabolic factors in the association between osteocalcin and testosterone in Chinese men. J Clin Endocrinol Metab 2013; 98: 3463-9. [CrossRef] [PubMed] [Google Scholar]
- Samavat J, Facchiano E, Cantini G, et al. Osteocalcin increase after bariatric surgery predicts androgen recovery in hypogonadal obese males. Int J Obes 2014; 38: 357-63. [CrossRef] [PubMed] [Google Scholar]
- Pi M, Chen L, Huang MZ, et al. GPRC6A null mice exhibit osteopenia, feminization and metabolic syndrome. PLoS One 2008; 3: e3858. [CrossRef] [PubMed] [Google Scholar]
- Pi M, Quarles LD. Novel bone endocrine networks integrating mineral and energy metabolism. Curr Osteoporos Rep 2013; 11: 391-9. [Google Scholar]
- Ferron M, Lacombe J, Germain A, et al. GGCX and VKORC1 inhibit osteocalcin endocrine functions. J Cell Biol 2015; 208: 761-76. [CrossRef] [PubMed] [Google Scholar]
- Oury F, Ferron M, Huizhen W, et al. Osteocalcin regulates murine and human fertility through a pancreas-bone-testis axis. J Clin Invest 2013; 123: 2421-33. [CrossRef] [PubMed] [Google Scholar]
- Wei J, Hanna T, Suda N, et al. Osteocalcin promotes β-cell proliferation during development and adulthood through Gprc6a. Diabetes 2014; 63: 1021-31. [CrossRef] [PubMed] [Google Scholar]
- Ducy P, Amling M, Takeda S, et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 2000; 100: 197-207. [CrossRef] [PubMed] [Google Scholar]
- Takeda S, Elefteriou F, Levasseur R, et al. Leptin regulates bone formation via the sympathetic nervous system. Cell 2002; 111: 305-17. [CrossRef] [PubMed] [Google Scholar]
- Dobreva G, Chahrour M, Dautzenberg M, et al. SATB2 is a multifunctional determinant of craniofacial patterning and osteoblast differentiation. Cell 2006; 125: 971-86. [CrossRef] [PubMed] [Google Scholar]
- Lee B, Thirunavukkarasu K, Zhou L, et al. Missense mutations abolishing DNA binding of the osteoblast-specific transcription factor OSF2/CBFA1 in cleidocranial dysplasia. Nat Genet 1997; 16: 307-10. [Google Scholar]
- McBrien H, Turk J, Letch N. The management of ADHD and associated problems in a young person with cleidocranial dysostosis (CCD) and mild intellectual disability. Clin Child Psychol Psychiatry 2006; 11: 445-56. [CrossRef] [PubMed] [Google Scholar]
- Mundlos S, Otto F, Mundlos C, et al. Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell 1997; 89: 773-9. [CrossRef] [PubMed] [Google Scholar]
- Rousseaud A, Moriceau S, Ramos-Brossier M, Oury F. Bone-brain crosstalk and potential associated diseases. Horm Mol Biol Clin Investig 2016; 28: 69-83. [PubMed] [Google Scholar]
- Hinoi E, Bialek P, Chen YT, et al. Runx2 inhibits chondrocyte proliferation and hypertrophy through its expression in the perichondrium. Genes Dev 2006; 20: 2937-42. [CrossRef] [PubMed] [Google Scholar]
- Oury F, Khrimian L, Denny CA, et al. Maternal and offspring pools of osteocalcin influence brain development and functions. Cell 2013; 155: 228-41. [CrossRef] [PubMed] [Google Scholar]
- Krhimian L, Obri A, Ramos-Brossier M, et al. Gpr158 mediates Osteocalcin's regulation of cognition. J Exp Med 2017; 155: 228-41. [Google Scholar]
- Bradburn S, McPhee JS, Bagley L, et al. Association between osteocalcin and cognitive performance in healthy older adults. Age Ageing 2016; 1-6. [Google Scholar]
- Pi M, Wu Y, Quarles LD. GPRC6A mediates responses to osteocalcin in -cells in vitro and pancreas in vivo. J Bone Miner Res 2011; 26: 1680-3. [Google Scholar]
- Novotny SA, Warren GL, Hamrick MW. Aging and the muscle-bone relationship. Physiology 2015; 30: 8-16. [CrossRef] [Google Scholar]
- Partridge L, Gems D. Mechanisms of ageing: public or private? Nat Rev Genet 2002; 3: 165-75. [CrossRef] [PubMed] [Google Scholar]
- Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol 2012; 8: 457-65. [CrossRef] [PubMed] [Google Scholar]
- Mera P, Laue K, Ferron M, et al. Osteocalcin signaling in myofibers is necessary and sufficient for optimum adaptation to exercise. Cell Metab 2016; 23: 1078-92. [CrossRef] [PubMed] [Google Scholar]
- Mera P, Laue K, Wei J, et al. Osteocalcin is necessary and sufficient to maintain muscle mass in older mice. Mol Metab 2016; 5: 1042-7. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.