Free Access
Med Sci (Paris)
Volume 34, Number 1, Janvier 2018
Page(s) 47 - 53
Section M/S Revues
Published online 31 January 2018
  1. Jamilloux Y, Henry T. Les inflammasomes: plates-formes de l'immunité innée. Med Sci (Paris) 2013; 29: 975-84. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  2. Kayagaki N, Stowe IB, Lee BL, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 2015; 526: 666-71. [CrossRef] [PubMed] [Google Scholar]
  3. Cabon L, Martinez-Torres AC, Susin SA. La mort cellulaire programmée ne manque pas de vocabulaire. Med Sci (Paris) 2013; 29: 1117-24. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  4. Lu A, Magupalli VG, Ruan J, et al. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 2014; 156: 1193-206. [CrossRef] [PubMed] [Google Scholar]
  5. Shinkai K, McCalmont TH, Leslie KS. Cryopyrin-associated periodic syndromes and autoinflammation. Clin Exp Dermatol 2008; 33: 1-9. [PubMed] [Google Scholar]
  6. Martinon F, Pétrilli V, Mayor A, et al. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 2006; 440: 237-41. [CrossRef] [PubMed] [Google Scholar]
  7. Vandanmagsar B, Youm YH, Ravussin A, et al. The NALP3/NLRP3 inflammasome instigates obesity-induced autoinflammation and insulin resistance. Nat Med 2011; 17: 179-88. [CrossRef] [PubMed] [Google Scholar]
  8. Youm Y-H, Grant RW, McCabe LR, et al. Canonical Nlrp3 inflammasome links systemic low grade inflammation to functional decline in aging. Cell Metab 2013; 18: 519-32. [CrossRef] [PubMed] [Google Scholar]
  9. Heneka MT, Kummer MP, Latz E. Innate immune activation in neurodegenerative disease. Nat Rev Immunol 2014; 14: 463-77. [CrossRef] [PubMed] [Google Scholar]
  10. Franchi L, Muñoz-Planillo R, Núñez G. Sensing and reacting to microbes via the inflammasomes. Nat Immunol 2012; 13: 325-32. [CrossRef] [PubMed] [Google Scholar]
  11. Dostert C, Pétrilli V. Amiante et inflammation, rôle de l'inflammasome. Med Sci (Paris) 2008; 24: 916-8. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  12. Elliott EI, Sutterwala FS. Initiation and perpetuation of NLRP3 inflammasome activation and assembly. Immunol Rev. 2015; 265: 35-52. [CrossRef] [PubMed] [Google Scholar]
  13. Gaidt MM, Ebert TS, Chauhan D, et al. Human monocytes engage an alternative inflammasome pathway. Immunity 2016; 44: 833-46. [CrossRef] [PubMed] [Google Scholar]
  14. Jamilloux Y, Lefeuvre L, Magnotti F, et al. Familial Mediterranean fever mutations are hypermorphic mutations that specifically decrease the activation threshold of the Pyrin inflammasome. Rheumatology 2017; doi: 10.1093/rheumatology/kex373. [Google Scholar]
  15. Bauernfeind FG, Horvath G, Stutz A, et al. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol 2009; 183: 787-91. [CrossRef] [PubMed] [Google Scholar]
  16. Franchi L, Eigenbrod T, Núñez G. Cutting edge: TNF-alpha mediates sensitization to ATP and silica via the NLRP3 inflammasome in the absence of microbial stimulation. J Immunol 2009; 183: 792-6. [CrossRef] [PubMed] [Google Scholar]
  17. Gurung P, Anand PK, Malireddi RKS, et al. FADD and caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes. J Immunol 2014; 192: 1835-46. [CrossRef] [PubMed] [Google Scholar]
  18. Zhang X, Fan C, Zhang H, et al. MLKL and FADD are critical for suppressing progressive lymphoproliferative disease and activating the NLRP3 inflammasome. Cell Rep 2016; 16: 3247-59. [CrossRef] [PubMed] [Google Scholar]
  19. Fernandes-Alnemri T, Kang S, Anderson C, et al. Cutting edge: TLR signaling licenses IRAK1 for rapid activation of the NLRP3 inflammasome. J Immunol 2013; 191: 3995-9. [CrossRef] [PubMed] [Google Scholar]
  20. Juliana C, Fernandes-Alnemri T, Kang S, et al. Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation. J Biol Chem 2012; 287: 36617-22. [CrossRef] [PubMed] [Google Scholar]
  21. Kang S, Fernandes-Alnemri T, Rogers C, et al. Caspase-8 scaffolding function and MLKL regulate NLRP3 inflammasome activation downstream of TLR3. Nat Commun 2015; 6: 7515. [CrossRef] [PubMed] [Google Scholar]
  22. Hernandez-Cuellar E, Tsuchiya K, Hara H, et al. Cutting edge: nitric oxide inhibits the NLRP3 inflammasome. J Immunol 2012; 189: 5113-7. [CrossRef] [PubMed] [Google Scholar]
  23. Rühl S, Broz P. Caspase-11 activates a canonical NLRP3 inflammasome by promoting K+ efflux. Eur J Immunol 2015; 45: 2927-36. [CrossRef] [PubMed] [Google Scholar]
  24. Solle M, Labasi J, Perregaux DG, et al. Altered cytokine production in mice lacking P2X(7) receptors. J Biol Chem 2001; 276: 125-32. [CrossRef] [PubMed] [Google Scholar]
  25. Hornung V, Bauernfeind F, Halle A, et al. Silica crystals and aluminum salts mediate NALP-3 inflammasome activation via phagosomal destabilization. Nat Immunol 2008; 9: 847-56. [CrossRef] [PubMed] [Google Scholar]
  26. Franklin BS, Bossaller L, De Nardo D, et al. The adaptor ASC has extracellular and prionoid activities that propagate inflammation. Nat Immunol 2014; 15: 727-37. [CrossRef] [PubMed] [Google Scholar]
  27. Baroja-Mazo A, Martín-Sánchez F, Gomez AI, et al. The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nat Immunol 2014; 15: 738-48. [CrossRef] [PubMed] [Google Scholar]
  28. Zhou R, Yazdi AS, Menu P, et al. A role for mitochondria in NLRP3 inflammasome activation. Nature 2011; 469: 221-5. [CrossRef] [PubMed] [Google Scholar]
  29. Lee GS, Subramanian N, Kim AI, et al. The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature 2012; 492: 123-7. [CrossRef] [PubMed] [Google Scholar]
  30. Muñoz-Planillo R, Kuffa P, Martínez-Colón G, et al. K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 2013; 38: 1142-53. [CrossRef] [PubMed] [Google Scholar]
  31. Iyer SS, He Q, Janczy JR, et al. Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation. Immunity 2013; 39: 311-23. [CrossRef] [PubMed] [Google Scholar]
  32. Nakahira K, Haspel JA, Rathinam VA, et al. Autophagy proteins regulate innate immune response by inhibiting NALP3 inflammasome-mediated mitochondrial DNA release. Nat Immunol 2011; 12: 222-30. [CrossRef] [PubMed] [Google Scholar]
  33. Song N, Liu ZS, Xue W, et al. NLRP3 Phosphorylation is an essential priming event for inflammasome activation. Mol Cell 2017; 68: 185-7. [CrossRef] [PubMed] [Google Scholar]
  34. Saito M, Fujisawa A, Nishikomori R, et al. Somatic mosaicism of CIAS1 in a patient with chronic infantile neurologic, cutaneous, articular syndrome. Arthritis Rheum 2005; 52: 3579-85. [CrossRef] [PubMed] [Google Scholar]
  35. Mayor A, Martinon F, De Smedt T, et al. A crucial function of SGT1 and HSP90 in inflammasome activity links mammalian and plant innate immune responses. Nat Immunol 2007; 8: 497-503. [CrossRef] [PubMed] [Google Scholar]
  36. Han S, Lear TB, Jerome JA, et al. Lipopolysaccharide primes the NALP3 inflammasome by inhibiting its ubiquitination and degradation mediated by the SCFFBXL2 E3 ligase. J Biol Chem 2015; 290: 18124-33. [CrossRef] [PubMed] [Google Scholar]
  37. Duong BH, Onizawa M, Oses-Prieto JA, et al. A20 restricts ubiquitination of pro-interleukin-1β protein complexes and suppresses NLRP3 inflammasome activity. Immunity 2015; 42: 55-67. [CrossRef] [PubMed] [Google Scholar]
  38. Py BF, Kim M-S, Vakifahmetoglu-Norberg H, et al. Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity. Mol Cell 2013; 49: 331-8. [CrossRef] [PubMed] [Google Scholar]
  39. Spalinger MR, Kasper S, Gottier C, et al. NLRP3 tyrosine phosphorylation is controlled by protein tyrosine phosphatase PTPN22. J Clin Invest 2016; 126: 1783-1800. [CrossRef] [PubMed] [Google Scholar]
  40. Frenkel J, Kempen MJA van, Kuis W, et al. Variant chronic infantile neurologic, cutaneous, articular syndrome due to a mutation within the leucine-rich repeat domain of CIAS1. Arthritis Rheum 2004; 50: 2719-20. [CrossRef] [PubMed] [Google Scholar]
  41. Stutz A, Kolbe CC, Stahl R, et al. NLRP3 inflammasome assembly is regulated by phosphorylation of the pyrin domain. J Exp Med 2017; 214: 1725-36. [CrossRef] [PubMed] [Google Scholar]
  42. He Y, Zeng MY, Yang D, et al. Nek7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature 2016; 530: 354-7. [CrossRef] [PubMed] [Google Scholar]
  43. Zhang Z, Meszaros G, He WT, et al. Protein kinase D at the Golgi controls NLRP3 inflammasome activation. J Exp Med 2017; 214: 2671-93. [CrossRef] [PubMed] [Google Scholar]
  44. Guo C, Xie S, Chi Z, et al. Bile acids control inflammation and metabolic disorder through inhibition of NLRP3 inflammasome. Immunity 2016; 45: 802-16. [CrossRef] [PubMed] [Google Scholar]
  45. Mortimer L, Moreau F, MacDonald JA, et al. NLRP3 inflammasome inhibition is disrupted in a group of auto-inflammatory disease CAPS mutations. Nat Immunol 2016; 17: 1176-86. [CrossRef] [PubMed] [Google Scholar]
  46. Yan Y, Jiang W, Liu L, et al. Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell 2015; 160: 62-73. [CrossRef] [PubMed] [Google Scholar]
  47. Hara H, Tsuchiya K, Kawamura I, et al. Phosphorylation of ASC acts as a molecular switch controlling the formation of speck-like aggregates and inflammasome activity. Nat Immunol 2013; 14: 1247-55. [CrossRef] [PubMed] [Google Scholar]
  48. Labbé K, McIntire CR, Doiron K, et al. Cellular inhibitors of apoptosis proteins cIAP1 and cIAP2 are required for efficient caspase-1 activation by the inflammasome. Immunity 2011; 35: 897-907. [CrossRef] [PubMed] [Google Scholar]
  49. Rodgers MA, Bowman JW, Fujita H, et al. The linear ubiquitin assembly complex (LUBAC) is essential for NLRP3 inflammasome activation. J Exp Med 2014; 211: 1333-47. [CrossRef] [PubMed] [Google Scholar]
  50. Shi CS, Shenderov K, Huang NN, et al. Activation of autophagy by inflammatory signals limits IL-1β production by targeting ubiquitinated inflammasomes for destruction. Nat Immunol 2012; 13: 255-63. [CrossRef] [PubMed] [Google Scholar]
  51. Song H, Liu B, Huai W, et al. The E3 ubiquitin ligase TRIM31 attenuates NLRP3 inflammasome activation by promoting proteasomal degradation of NLRP3. Nat Commun 2016; 7: 13727. [CrossRef] [PubMed] [Google Scholar]
  52. Mishra BB, Rathinam VAK, Martens GW, et al. Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasomedependent processing of IL-1β. Nat Immunol 2013; 14: 52-60. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.