Accès gratuit
Numéro
Med Sci (Paris)
Volume 34, Numéro 1, Janvier 2018
Page(s) 54 - 62
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20183401014
Publié en ligne 31 janvier 2018
  1. Bange C. Claude Bernard. la méthode expérimentale, et la Société de Biologie. J Soc Biol 2009; 203: 235-47. [CrossRef] [PubMed] [Google Scholar]
  2. Karsenty G. Convergence between bone and energy homeostases: leptin regulation of bone mass. Cell Metab 2006; 4: 341-8. [CrossRef] [PubMed] [Google Scholar]
  3. Quarles LD. FGF23, PHEX, and MEPE regulation of phosphate homeostasis and skeletal mineralization. Am J Physiol Endocrinol Metab 2003; 285: E1-9. [CrossRef] [PubMed] [Google Scholar]
  4. Mosialou I, Shikkel S, Liu JM, et al. MC4R-dependent suppression of appetite by bone-derived lipocalin 2. Nature 2017; 543: 385-90. [CrossRef] [PubMed] [Google Scholar]
  5. Karsenty G, Ferron M. The contribution of bone to whole-organism physiology. Nature 2012; 481: 314-20. [CrossRef] [PubMed] [Google Scholar]
  6. Ferron M, Wei J, Yoshizawa T, et al. Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 2010; 142: 296-308. [CrossRef] [PubMed] [Google Scholar]
  7. Confavreux C, Ferron M. Le diabète est tombé sur un os. Med Sci (Paris) 2008; 24: 21-3. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  8. Le Doan V, Marcil V. Ostéocalcine et métabolisme du glucose. Med Sci (Paris) 2017; 33: 417-22. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  9. Karsenty G, Kronenberg, HM, Settembre C. Genetic control of bone formation. Annu Rev Cell Dev Biol 2009; 25: 629-48. [CrossRef] [PubMed] [Google Scholar]
  10. Harada S, Rodan G. Control of osteoblast function and regulation of bone mass. Nature 2003; 423: 349-55. [CrossRef] [PubMed] [Google Scholar]
  11. Teitelbaum SL. Bone resorption by osteoclasts. Science 2000; 289: 1504-8. [Google Scholar]
  12. Rigotti NA, Nussbaum SR, Herzog DB, Neer RM. Osteoporosis in women with anorexia nervosa. N Engl J Med 1984; 311: 1601-6. [Google Scholar]
  13. Zhao LJ, Liu YJ, Liu PY, et al. Relationship of obesity with osteoporosis. J Clin Endocrinol Metab 2007; 92: 1640-6. [CrossRef] [PubMed] [Google Scholar]
  14. Ferron M, Hinoi E, Karsenty G, Ducy P. Osteocalcin differentially regulates cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc Natl Acad Sci USA 2008; 105: 5266-70. [CrossRef] [Google Scholar]
  15. Lee NK, Sowa H, Hinoi E, et al. Endocrine regulation of energy metabolism by the skeleton. Cell 2007; 130: 456-69. [CrossRef] [PubMed] [Google Scholar]
  16. Ducy P, Desbois C, Boyce B, et al. Increased bone formation in osteocalcindeficient mice. Nature 1996; 382: 448-52. [CrossRef] [PubMed] [Google Scholar]
  17. Yoshizawa T, Hinoi E, Jung DY, et al. The transcription factor ATF4 regulates glucose metabolism in mice through its expression in osteoblasts. J Clin Invest 2009; 119: 2807-17. [CrossRef] [PubMed] [Google Scholar]
  18. Saftig P, Hunziker E, Wehmeyer O, et al. Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc Natl Acad Sci USA 1998; 95: 13453-8. [CrossRef] [Google Scholar]
  19. Scimeca JC, Franchi A, Trojani C, et al. The gene encoding the mouse homologue of the human osteoclast-specific 116-kDa V-ATPase subunit bears a deletion in osteosclerotic (oc/oc) mutants. Bone 2000; 26: 207-13. [CrossRef] [PubMed] [Google Scholar]
  20. Ferron M, McKee MD, Levine RL, et al. Intermittent injections of osteocalcin improve glucose metabolism and prevent type 2 diabetes in mice. Bone 2012; 50: 568-75. [CrossRef] [PubMed] [Google Scholar]
  21. Wei J, Ferron M, Clarke CJ, et al. Bone-specific insulin resistance disrupts whole-body glucose homeostasis via decreased osteocalcin activation. J Clin Invest 2014; 124: 1-13. [Google Scholar]
  22. Sabek OM, Nishimoto SK, Fraga D, et al. Osteocalcin effect on human beta cells mass and function. Endocrinology 2015; 156: 1143. [CrossRef] [PubMed] [Google Scholar]
  23. Chamouni A, Schreiweis C, Oury F. Bone, brain and beyond. Rev Endocr Metab Disord 2015; 16: 99-113. [PubMed] [Google Scholar]
  24. Wei J, Karsenty G. An overview of the metabolic functions of osteocalcin. Curr Osteoporos Rep 2015; 13: 180-5. [Google Scholar]
  25. Khosla S. Update on estrogens and the skeleton. J Clin Endocrinol Metab 2010; 95: 3569-77. [CrossRef] [PubMed] [Google Scholar]
  26. Khosla S. Update in male osteoporosis. J Clin Endocrinol Metab 2010; 95: 3-10. [CrossRef] [PubMed] [Google Scholar]
  27. Oury F. A crosstalk between bone and gonads. Ann NY Acad Sci 2012; 1260: 1-7. [CrossRef] [Google Scholar]
  28. Yoshikawa Y, Kode A, Xu L, et al. Genetic evidence points to an osteocalcinindependent influence of osteoblasts on energy metabolism. J Bone Miner Res 2011; 26: 2012-25. [Google Scholar]
  29. Oury F, Sumara G, Sumara O, et al. Endocrine regulation of male fertility by the skeleton. Cell 2011; 144: 796-809. [CrossRef] [PubMed] [Google Scholar]
  30. Kirmani S, Atkinson EJ, Melton LJ3rd, et al. Relationship of testosterone and osteocalcin levels during growth. J Bone Miner Res 2011; 26: 2212-6. [Google Scholar]
  31. Kanazawa I, Tanaka K, Ogawa N, et al. Undercarboxylated osteocalcin is positively associated with free testosterone in male patients with type 2 diabetes mellitus. Osteoporos Int 2013; 24: 1115-9. [CrossRef] [PubMed] [Google Scholar]
  32. Liao M, Guo X, Yu X, et al. Role of metabolic factors in the association between osteocalcin and testosterone in Chinese men. J Clin Endocrinol Metab 2013; 98: 3463-9. [CrossRef] [PubMed] [Google Scholar]
  33. Samavat J, Facchiano E, Cantini G, et al. Osteocalcin increase after bariatric surgery predicts androgen recovery in hypogonadal obese males. Int J Obes 2014; 38: 357-63. [CrossRef] [PubMed] [Google Scholar]
  34. Pi M, Chen L, Huang MZ, et al. GPRC6A null mice exhibit osteopenia, feminization and metabolic syndrome. PLoS One 2008; 3: e3858. [CrossRef] [PubMed] [Google Scholar]
  35. Pi M, Quarles LD. Novel bone endocrine networks integrating mineral and energy metabolism. Curr Osteoporos Rep 2013; 11: 391-9. [Google Scholar]
  36. Ferron M, Lacombe J, Germain A, et al. GGCX and VKORC1 inhibit osteocalcin endocrine functions. J Cell Biol 2015; 208: 761-76. [CrossRef] [PubMed] [Google Scholar]
  37. Oury F, Ferron M, Huizhen W, et al. Osteocalcin regulates murine and human fertility through a pancreas-bone-testis axis. J Clin Invest 2013; 123: 2421-33. [CrossRef] [PubMed] [Google Scholar]
  38. Wei J, Hanna T, Suda N, et al. Osteocalcin promotes β-cell proliferation during development and adulthood through Gprc6a. Diabetes 2014; 63: 1021-31. [CrossRef] [PubMed] [Google Scholar]
  39. Ducy P, Amling M, Takeda S, et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 2000; 100: 197-207. [CrossRef] [PubMed] [Google Scholar]
  40. Takeda S, Elefteriou F, Levasseur R, et al. Leptin regulates bone formation via the sympathetic nervous system. Cell 2002; 111: 305-17. [CrossRef] [PubMed] [Google Scholar]
  41. Dobreva G, Chahrour M, Dautzenberg M, et al. SATB2 is a multifunctional determinant of craniofacial patterning and osteoblast differentiation. Cell 2006; 125: 971-86. [CrossRef] [PubMed] [Google Scholar]
  42. Lee B, Thirunavukkarasu K, Zhou L, et al. Missense mutations abolishing DNA binding of the osteoblast-specific transcription factor OSF2/CBFA1 in cleidocranial dysplasia. Nat Genet 1997; 16: 307-10. [Google Scholar]
  43. McBrien H, Turk J, Letch N. The management of ADHD and associated problems in a young person with cleidocranial dysostosis (CCD) and mild intellectual disability. Clin Child Psychol Psychiatry 2006; 11: 445-56. [CrossRef] [PubMed] [Google Scholar]
  44. Mundlos S, Otto F, Mundlos C, et al. Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell 1997; 89: 773-9. [CrossRef] [PubMed] [Google Scholar]
  45. Rousseaud A, Moriceau S, Ramos-Brossier M, Oury F. Bone-brain crosstalk and potential associated diseases. Horm Mol Biol Clin Investig 2016; 28: 69-83. [PubMed] [Google Scholar]
  46. Hinoi E, Bialek P, Chen YT, et al. Runx2 inhibits chondrocyte proliferation and hypertrophy through its expression in the perichondrium. Genes Dev 2006; 20: 2937-42. [CrossRef] [PubMed] [Google Scholar]
  47. Oury F, Khrimian L, Denny CA, et al. Maternal and offspring pools of osteocalcin influence brain development and functions. Cell 2013; 155: 228-41. [CrossRef] [PubMed] [Google Scholar]
  48. Krhimian L, Obri A, Ramos-Brossier M, et al. Gpr158 mediates Osteocalcin's regulation of cognition. J Exp Med 2017; 155: 228-41. [Google Scholar]
  49. Bradburn S, McPhee JS, Bagley L, et al. Association between osteocalcin and cognitive performance in healthy older adults. Age Ageing 2016; 1-6. [Google Scholar]
  50. Pi M, Wu Y, Quarles LD. GPRC6A mediates responses to osteocalcin in -cells in vitro and pancreas in vivo. J Bone Miner Res 2011; 26: 1680-3. [Google Scholar]
  51. Novotny SA, Warren GL, Hamrick MW. Aging and the muscle-bone relationship. Physiology 2015; 30: 8-16. [CrossRef] [Google Scholar]
  52. Partridge L, Gems D. Mechanisms of ageing: public or private? Nat Rev Genet 2002; 3: 165-75. [CrossRef] [PubMed] [Google Scholar]
  53. Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol 2012; 8: 457-65. [CrossRef] [PubMed] [Google Scholar]
  54. Mera P, Laue K, Ferron M, et al. Osteocalcin signaling in myofibers is necessary and sufficient for optimum adaptation to exercise. Cell Metab 2016; 23: 1078-92. [CrossRef] [PubMed] [Google Scholar]
  55. Mera P, Laue K, Wei J, et al. Osteocalcin is necessary and sufficient to maintain muscle mass in older mice. Mol Metab 2016; 5: 1042-7. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.