Free Access
Med Sci (Paris)
Volume 34, Number 1, Janvier 2018
Page(s) 63 - 71
Section M/S Revues
Published online 31 January 2018
  1. Virchow R. Die Cellularpathologie in ihrer Begründung auf physiologische und pathologische Gewebelehre. Berlin : Verlag, 1858. [Google Scholar]
  2. Boveri T. Concerning the origin of malignant tumors by Theodor Boveri. Translated and annotated by Henry Harris. J Cell Sci 2008; 121 : 1-84. [Google Scholar]
  3. Hansemann L. Ueber asymmetrische zelltheilung in epithelkrebsen und deren biologische bedeutung. Arch Pathol Anat Physiol Klin Med 1890; 119 : 299-326. [CrossRef] [Google Scholar]
  4. Bishop JM. Cancer: the rise of the genetic paradigm. Genes Dev 1995; 9 : 1309-15. [CrossRef] [PubMed] [Google Scholar]
  5. Varmus H. The transformation of oncology. Science 2016; 352 : 123. [Google Scholar]
  6. Knudson AG. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 1971; 68 : 820-3. [CrossRef] [Google Scholar]
  7. Weinberg RA. The retinoblastoma protein and cell cycle control. Cell 1995; 81 : 323-30. [CrossRef] [PubMed] [Google Scholar]
  8. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990; 61 : 759-67. [CrossRef] [PubMed] [Google Scholar]
  9. Poole CJ, van Riggelen J. MYC-Master Regulator of the cancer epigenome and transcriptome. Genes 2017; 8 : 5. [Google Scholar]
  10. Hollyday R. A new theory of carcinogenesis. Br J Cancer 1979; 40 : 513. [CrossRef] [PubMed] [Google Scholar]
  11. Shen H, Laird PW. Interplay between the cancer genome and epigenome. Cell 2013; 153 : 38-55. [CrossRef] [PubMed] [Google Scholar]
  12. Jones PA, Issa JP, Baylin S. Targeting the cancer epigenome for therapy. Nat Rev Genet 2016; 17 : 630-41. [CrossRef] [PubMed] [Google Scholar]
  13. Godinho SA, Picone R, Burute M, et al. Oncogene-like induction of cellular invasion from centrosome amplification. Nature 2014; 510 : 167-71. [CrossRef] [PubMed] [Google Scholar]
  14. Sercin O, Larsimont JC, Karambelas AE, et al. Transient PLK4 overexpression accelerates tumorigenesis in p53-deficient epidermis. Nat Cell Biol 2016; 18 : 100-10. [CrossRef] [PubMed] [Google Scholar]
  15. Levine MS, Bakker B, Boeckx B et al. Centrosome amplification is sufficient to promote spontaneous tumorigenesis in mammals. Dev Cell 2017; 40 : 313-22. [CrossRef] [PubMed] [Google Scholar]
  16. Harnett MM, Pineda MA, Latré de Laté P, et al. From Christian de Duve to Yoshinori Ohsumi: more to autophagy than just dining at home. Biomed J 2017; 40 : 9-22. [CrossRef] [PubMed] [Google Scholar]
  17. Qu X, Yu J, Bhagat G, et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 2003; 112 : 1809-20. [CrossRef] [PubMed] [Google Scholar]
  18. Guo JY, Xia B, White E. Autophagy mediated tumor promotion. Cell 2013; 155 : 1216-9. [CrossRef] [PubMed] [Google Scholar]
  19. Galluzzi L, Pietrocola F, Bravo-San Pedro JM, et al. Autophagy in malignant transformation and ca ncer progression. EMBO J 2015; 34 : 856-80. [CrossRef] [PubMed] [Google Scholar]
  20. Bergeron JJ, Di Guglielmo GM, Dahan S, et al. Spatial and temporal regulation of receptor tyrosine kinase activation and intracellular signal transduction. Annu Rev Biochem 2016; 85 : 573-9. [CrossRef] [PubMed] [Google Scholar]
  21. Avril T, Vauléon E, Chevet E. Endoplasmic reticulum stress signaling and chemotherapy resistance in solid cancers. Oncogenesis 2017; 6 : e373. [CrossRef] [PubMed] [Google Scholar]
  22. Vyas S, Zaganjor E, Haigis MC. Mitochondria and cancer. Cell 2016; 166 : 555-66. [CrossRef] [PubMed] [Google Scholar]
  23. Herrero A, Casar B, Colón-Bolea P, et al. Defined spatiotemporal features of RAS-ERK signals dictate cell fate in MCF-7 mammary epithelial cells. Mol Biol Cell 2016; 12 : 1958-68. [Google Scholar]
  24. Hernandez-Valladares M, Prior IA. Comparative proteomic analysis of compartmentalized Ras signaling. Sci Rep 2015; 5 : 17307. [CrossRef] [PubMed] [Google Scholar]
  25. Farber-Katz SE, Dippold HC, Buschman MD, et al. DNA damage triggers Golgi dispersal via DNA-PK and GOLPH3. Cell 2014; 156 : 413-27. [CrossRef] [PubMed] [Google Scholar]
  26. Waugh MG. Phosphatidylinositol 4-kinases, phosphatidylinositol 4-phosphate and cancer. Cancer Lett 2012; 325 : 125-31. [Google Scholar]
  27. Ouderkirk, JL, Krendel M. Non-muscle myosins in tumor progression, cancer cell invasion, and metastasis. Cytoskeleton 2014; 71 : 447-63. [CrossRef] [Google Scholar]
  28. Tran T, Diniz MO, Dransart E, et al. A therapeutic Her2/neu vaccine targeting dendritic cells preferentially inhibits the groxth of low Her/neu-expressing tumor in HLA-A2 transgenic mice. Clin Cancer Res 2016; 22 : 4133-44. [CrossRef] [PubMed] [Google Scholar]
  29. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139 : 871-90. [CrossRef] [PubMed] [Google Scholar]
  30. Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994; 367 : 645-8. [CrossRef] [PubMed] [Google Scholar]
  31. Gupta PB, Onder TT, Jiang G, et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 2009; 138 : 645-59. [CrossRef] [PubMed] [Google Scholar]
  32. Mai TT, Hamaï A, Hienzsch A et al. Salinomycin kills cancer stem cells by sequestering iron in lysosomes. Nat Chem Biol 2017; 9 : 1025-33. [Google Scholar]
  33. Alanko J, Mai A, Jacquemet G et al. Integrin endosomal signalling suppresses anoikis. Nat Cell Biol 2015; 17 : 1412-21. [CrossRef] [PubMed] [Google Scholar]
  34. Elkhatib N, Bresteau E, Baschieri F, et al. Tubular clathrin/AP-2 lattices pinch collagen fibers to support 3D cell migration. Science 2017; 356 : 6343. [Google Scholar]
  35. Glentis A, Oertle P, Mariani P, et al. Carcinoma-associated fibroblasts induce metalloprotease-independent cancer cell invasion of the basement membrane. Nat Commun 2017; 8 : 924. [CrossRef] [PubMed] [Google Scholar]
  36. Correia AL, Bissell MJ. The tumor microenvironment is a dominant force in multidrug resistance. Drug Resist Update 2012; 15 : 39-49. [CrossRef] [Google Scholar]
  37. Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature 2017; 541 : 321-30. [CrossRef] [PubMed] [Google Scholar]
  38. Fridman WH, Sautès-Fridman C. Le microenvironnement tumoral : matrice nourricière, champ de bataille et cible thérapeutique des cancers. Med Sci (Paris) 2014; 30 : 359-65. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  39. Zitvogel L, Daillère R, Roberti MP, et al. Anticancer effects of the microbiome and its products. Nat Rev Microbiol 2017; 8 : 465-78. [Google Scholar]
  40. Rubashkin MG, Cassereau L, Bainer R et al. Force engages vinculin and promotes tumor progression by enhancing PI3K activation of phosphatidylinositol (3,4,5)-triphosphate. Cancer Res 2014; 74 : 4597-611. [Google Scholar]
  41. Fernandez-Sanchez ME, Barbier S, Whitehead J, et al. Mechanical induction of the tumorigenic beta-catenin pathway by tumour growth pressure. Nature 2015; 523 : 92-5. [CrossRef] [PubMed] [Google Scholar]
  42. Sousa CM, Biancur DE, Wang X, et al. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature 2016; 536 : 479-83. [CrossRef] [PubMed] [Google Scholar]
  43. Dozynkiewicz MA, Jamieson NB, Macpherson I, et al. Rab25 and CLIC3 collaborate to promote integrin recycling from late endosomes/lysosomes and drive cancer progression. Dev Cell 2012; 22 : 131-45. [CrossRef] [PubMed] [Google Scholar]
  44. Hernandez-Fernaud JR, Ruengeler E, Casazza A, et al. Secreted CLIC3 drives cancer progression through its glutathione-dependent oxidoreductase activity. Nat Commun 2017; 8 : 14206. [CrossRef] [PubMed] [Google Scholar]
  45. Chen BC, Legant WR, Wang K, et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 2014; 346 : 1257998. [Google Scholar]
  46. Kennedy MJ, Hughes RM, Peteya LA, et al. Rapid blue-light-mediated induction of protein interactions in living cells. Nat Methods 2010; 7 : 973-5. [CrossRef] [PubMed] [Google Scholar]
  47. Orlov I, Myasnikov AG, Andronov L, et al. The integrative role of cryo electron microscopy in molecular and cellular structural biology. Biol Cell 2017; 109 : 81-93. [CrossRef] [PubMed] [Google Scholar]
  48. Sung KE, Beebe DJ. Microfluidic 3D models of cancer. Adv Drug Deliv Rev 2014; 79-80 : 68-78. [CrossRef] [PubMed] [Google Scholar]
  49. Fatehullah A, Tan SH, Barker N. Organoids as an in vitro model of human development and disease. Nat Cell Biol 2016; 18 : 246-54. [CrossRef] [PubMed] [Google Scholar]
  50. van de Wetering M, Francies HE et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 2015; 16 : 933-45. [Google Scholar]
  51. Saini A. Cystic fibrosis patients benefit from mini guts. Cell Stem Cell 2016; 19: 425-7. [Google Scholar]
  52. Chanrion M, Kuperstein I, Barrière C, et al. Concomitant Notch activation and p53 deletion trigger epithelial-to-mesenchymal transition and metastasis in mouse gut. Nat Commun 2014; 5 : 5005. [CrossRef] [PubMed] [Google Scholar]
  53. Hamaï A, Mehrpour M. Homéostasie du fer et autophagie. Med Sci (Paris) 2017; 33 : 260-7. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  54. Chéreau R, Angibaud J, Nägerl UV. L'imagerie super-résolution STED révèle un nouveau type de plasticité axonale. Med Sci (Paris) 2018; 34 : 17-20. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  55. Girard PP, Forget BC. Microscopie de fluorescence à feuille de lumière : la face cachée de l'échantillon enfin dévoilée. Med Sci (Paris) 2011; 27 : 753-62. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  56. Boutin JA, Li Z, Vuillard L, Vénien-Bryan C. La cryo-microscopie, une alternative à la cristallographie aux rayons X ? Med Sci (Paris) 2016; 32 : 758-67. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  57. Saidak Z, Giaccobi AS, Chenda Ly M, et al. La modélisation mathématique, un outil essentiel pour l'étude du ciblage thérapeutique des tumeurs solides. Med Sci (Paris) 2017; 33 : 1055-62. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.