Accès gratuit
Numéro
Med Sci (Paris)
Volume 34, Numéro 1, Janvier 2018
Page(s) 63 - 71
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20183401015
Publié en ligne 31 janvier 2018
  1. Virchow R. Die Cellularpathologie in ihrer Begründung auf physiologische und pathologische Gewebelehre. Berlin : Verlag, 1858. [Google Scholar]
  2. Boveri T. Concerning the origin of malignant tumors by Theodor Boveri. Translated and annotated by Henry Harris. J Cell Sci 2008; 121 : 1-84. [Google Scholar]
  3. Hansemann L. Ueber asymmetrische zelltheilung in epithelkrebsen und deren biologische bedeutung. Arch Pathol Anat Physiol Klin Med 1890; 119 : 299-326. [CrossRef] [Google Scholar]
  4. Bishop JM. Cancer: the rise of the genetic paradigm. Genes Dev 1995; 9 : 1309-15. [CrossRef] [PubMed] [Google Scholar]
  5. Varmus H. The transformation of oncology. Science 2016; 352 : 123. [Google Scholar]
  6. Knudson AG. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 1971; 68 : 820-3. [CrossRef] [Google Scholar]
  7. Weinberg RA. The retinoblastoma protein and cell cycle control. Cell 1995; 81 : 323-30. [CrossRef] [PubMed] [Google Scholar]
  8. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990; 61 : 759-67. [CrossRef] [PubMed] [Google Scholar]
  9. Poole CJ, van Riggelen J. MYC-Master Regulator of the cancer epigenome and transcriptome. Genes 2017; 8 : 5. [Google Scholar]
  10. Hollyday R. A new theory of carcinogenesis. Br J Cancer 1979; 40 : 513. [CrossRef] [PubMed] [Google Scholar]
  11. Shen H, Laird PW. Interplay between the cancer genome and epigenome. Cell 2013; 153 : 38-55. [CrossRef] [PubMed] [Google Scholar]
  12. Jones PA, Issa JP, Baylin S. Targeting the cancer epigenome for therapy. Nat Rev Genet 2016; 17 : 630-41. [CrossRef] [PubMed] [Google Scholar]
  13. Godinho SA, Picone R, Burute M, et al. Oncogene-like induction of cellular invasion from centrosome amplification. Nature 2014; 510 : 167-71. [CrossRef] [PubMed] [Google Scholar]
  14. Sercin O, Larsimont JC, Karambelas AE, et al. Transient PLK4 overexpression accelerates tumorigenesis in p53-deficient epidermis. Nat Cell Biol 2016; 18 : 100-10. [CrossRef] [PubMed] [Google Scholar]
  15. Levine MS, Bakker B, Boeckx B et al. Centrosome amplification is sufficient to promote spontaneous tumorigenesis in mammals. Dev Cell 2017; 40 : 313-22. [CrossRef] [PubMed] [Google Scholar]
  16. Harnett MM, Pineda MA, Latré de Laté P, et al. From Christian de Duve to Yoshinori Ohsumi: more to autophagy than just dining at home. Biomed J 2017; 40 : 9-22. [CrossRef] [PubMed] [Google Scholar]
  17. Qu X, Yu J, Bhagat G, et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 2003; 112 : 1809-20. [CrossRef] [PubMed] [Google Scholar]
  18. Guo JY, Xia B, White E. Autophagy mediated tumor promotion. Cell 2013; 155 : 1216-9. [CrossRef] [PubMed] [Google Scholar]
  19. Galluzzi L, Pietrocola F, Bravo-San Pedro JM, et al. Autophagy in malignant transformation and ca ncer progression. EMBO J 2015; 34 : 856-80. [CrossRef] [PubMed] [Google Scholar]
  20. Bergeron JJ, Di Guglielmo GM, Dahan S, et al. Spatial and temporal regulation of receptor tyrosine kinase activation and intracellular signal transduction. Annu Rev Biochem 2016; 85 : 573-9. [CrossRef] [PubMed] [Google Scholar]
  21. Avril T, Vauléon E, Chevet E. Endoplasmic reticulum stress signaling and chemotherapy resistance in solid cancers. Oncogenesis 2017; 6 : e373. [CrossRef] [PubMed] [Google Scholar]
  22. Vyas S, Zaganjor E, Haigis MC. Mitochondria and cancer. Cell 2016; 166 : 555-66. [CrossRef] [PubMed] [Google Scholar]
  23. Herrero A, Casar B, Colón-Bolea P, et al. Defined spatiotemporal features of RAS-ERK signals dictate cell fate in MCF-7 mammary epithelial cells. Mol Biol Cell 2016; 12 : 1958-68. [Google Scholar]
  24. Hernandez-Valladares M, Prior IA. Comparative proteomic analysis of compartmentalized Ras signaling. Sci Rep 2015; 5 : 17307. [CrossRef] [PubMed] [Google Scholar]
  25. Farber-Katz SE, Dippold HC, Buschman MD, et al. DNA damage triggers Golgi dispersal via DNA-PK and GOLPH3. Cell 2014; 156 : 413-27. [CrossRef] [PubMed] [Google Scholar]
  26. Waugh MG. Phosphatidylinositol 4-kinases, phosphatidylinositol 4-phosphate and cancer. Cancer Lett 2012; 325 : 125-31. [Google Scholar]
  27. Ouderkirk, JL, Krendel M. Non-muscle myosins in tumor progression, cancer cell invasion, and metastasis. Cytoskeleton 2014; 71 : 447-63. [CrossRef] [Google Scholar]
  28. Tran T, Diniz MO, Dransart E, et al. A therapeutic Her2/neu vaccine targeting dendritic cells preferentially inhibits the groxth of low Her/neu-expressing tumor in HLA-A2 transgenic mice. Clin Cancer Res 2016; 22 : 4133-44. [CrossRef] [PubMed] [Google Scholar]
  29. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139 : 871-90. [CrossRef] [PubMed] [Google Scholar]
  30. Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994; 367 : 645-8. [CrossRef] [PubMed] [Google Scholar]
  31. Gupta PB, Onder TT, Jiang G, et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 2009; 138 : 645-59. [CrossRef] [PubMed] [Google Scholar]
  32. Mai TT, Hamaï A, Hienzsch A et al. Salinomycin kills cancer stem cells by sequestering iron in lysosomes. Nat Chem Biol 2017; 9 : 1025-33. [Google Scholar]
  33. Alanko J, Mai A, Jacquemet G et al. Integrin endosomal signalling suppresses anoikis. Nat Cell Biol 2015; 17 : 1412-21. [CrossRef] [PubMed] [Google Scholar]
  34. Elkhatib N, Bresteau E, Baschieri F, et al. Tubular clathrin/AP-2 lattices pinch collagen fibers to support 3D cell migration. Science 2017; 356 : 6343. [Google Scholar]
  35. Glentis A, Oertle P, Mariani P, et al. Carcinoma-associated fibroblasts induce metalloprotease-independent cancer cell invasion of the basement membrane. Nat Commun 2017; 8 : 924. [CrossRef] [PubMed] [Google Scholar]
  36. Correia AL, Bissell MJ. The tumor microenvironment is a dominant force in multidrug resistance. Drug Resist Update 2012; 15 : 39-49. [CrossRef] [Google Scholar]
  37. Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature 2017; 541 : 321-30. [CrossRef] [PubMed] [Google Scholar]
  38. Fridman WH, Sautès-Fridman C. Le microenvironnement tumoral : matrice nourricière, champ de bataille et cible thérapeutique des cancers. Med Sci (Paris) 2014; 30 : 359-65. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  39. Zitvogel L, Daillère R, Roberti MP, et al. Anticancer effects of the microbiome and its products. Nat Rev Microbiol 2017; 8 : 465-78. [Google Scholar]
  40. Rubashkin MG, Cassereau L, Bainer R et al. Force engages vinculin and promotes tumor progression by enhancing PI3K activation of phosphatidylinositol (3,4,5)-triphosphate. Cancer Res 2014; 74 : 4597-611. [Google Scholar]
  41. Fernandez-Sanchez ME, Barbier S, Whitehead J, et al. Mechanical induction of the tumorigenic beta-catenin pathway by tumour growth pressure. Nature 2015; 523 : 92-5. [CrossRef] [PubMed] [Google Scholar]
  42. Sousa CM, Biancur DE, Wang X, et al. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature 2016; 536 : 479-83. [CrossRef] [PubMed] [Google Scholar]
  43. Dozynkiewicz MA, Jamieson NB, Macpherson I, et al. Rab25 and CLIC3 collaborate to promote integrin recycling from late endosomes/lysosomes and drive cancer progression. Dev Cell 2012; 22 : 131-45. [CrossRef] [PubMed] [Google Scholar]
  44. Hernandez-Fernaud JR, Ruengeler E, Casazza A, et al. Secreted CLIC3 drives cancer progression through its glutathione-dependent oxidoreductase activity. Nat Commun 2017; 8 : 14206. [CrossRef] [PubMed] [Google Scholar]
  45. Chen BC, Legant WR, Wang K, et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 2014; 346 : 1257998. [Google Scholar]
  46. Kennedy MJ, Hughes RM, Peteya LA, et al. Rapid blue-light-mediated induction of protein interactions in living cells. Nat Methods 2010; 7 : 973-5. [CrossRef] [PubMed] [Google Scholar]
  47. Orlov I, Myasnikov AG, Andronov L, et al. The integrative role of cryo electron microscopy in molecular and cellular structural biology. Biol Cell 2017; 109 : 81-93. [CrossRef] [PubMed] [Google Scholar]
  48. Sung KE, Beebe DJ. Microfluidic 3D models of cancer. Adv Drug Deliv Rev 2014; 79-80 : 68-78. [CrossRef] [PubMed] [Google Scholar]
  49. Fatehullah A, Tan SH, Barker N. Organoids as an in vitro model of human development and disease. Nat Cell Biol 2016; 18 : 246-54. [CrossRef] [PubMed] [Google Scholar]
  50. van de Wetering M, Francies HE et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 2015; 16 : 933-45. [Google Scholar]
  51. Saini A. Cystic fibrosis patients benefit from mini guts. Cell Stem Cell 2016; 19: 425-7. [Google Scholar]
  52. Chanrion M, Kuperstein I, Barrière C, et al. Concomitant Notch activation and p53 deletion trigger epithelial-to-mesenchymal transition and metastasis in mouse gut. Nat Commun 2014; 5 : 5005. [CrossRef] [PubMed] [Google Scholar]
  53. Hamaï A, Mehrpour M. Homéostasie du fer et autophagie. Med Sci (Paris) 2017; 33 : 260-7. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  54. Chéreau R, Angibaud J, Nägerl UV. L'imagerie super-résolution STED révèle un nouveau type de plasticité axonale. Med Sci (Paris) 2018; 34 : 17-20. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  55. Girard PP, Forget BC. Microscopie de fluorescence à feuille de lumière : la face cachée de l'échantillon enfin dévoilée. Med Sci (Paris) 2011; 27 : 753-62. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  56. Boutin JA, Li Z, Vuillard L, Vénien-Bryan C. La cryo-microscopie, une alternative à la cristallographie aux rayons X ? Med Sci (Paris) 2016; 32 : 758-67. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  57. Saidak Z, Giaccobi AS, Chenda Ly M, et al. La modélisation mathématique, un outil essentiel pour l'étude du ciblage thérapeutique des tumeurs solides. Med Sci (Paris) 2017; 33 : 1055-62. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.