Free Access
Med Sci (Paris)
Volume 33, Number 8-9, Août–Septembre 2017
Page(s) 771 - 778
Section M/S Revues
Published online 18 September 2017
  1. Isaacson PG, Norton AJ, Addis BJ. The human thymus contains a novel population of B lymphocytes. Lancet 1987 ; 2 : 1488–1491. [CrossRef] [PubMed] [Google Scholar]
  2. Spencer J, Choy M, Hussell T, et al. Properties of human thymic B cells. Immunology 1992 ; 75 : 596–600. [PubMed] [Google Scholar]
  3. Fend F, Nachbaur D, Oberwasserlechner F, et al. Phenotype and topography of human thymic B cells. An immunohistologic study. Virchows Arch B Cell Pathol Incl Mol Pathol 1991 ; 60 : 381–388. [CrossRef] [PubMed] [Google Scholar]
  4. Klein L, Kyewski B, Allen PM, et al. Positive and negative selection of the T cell repertoire: what thymocytes see (and don’t see). Nat Rev Immunol 2014 ; 14 : 377–391. [CrossRef] [PubMed] [Google Scholar]
  5. Dunn-Walters DK, Howe CJ, Isaacson PG, et al. Location and sequence of rearranged immunoglobulin genes in human thymus. Eur J Immunol 1995 ; 25 : 513–519. [CrossRef] [PubMed] [Google Scholar]
  6. Gies V, Guffroy A, Danion F, et al. B cells differentiate in human thymus and express AIRE. J Allergy Clin Immunol 2017 ; 139 : 1049–52.e12. [CrossRef] [PubMed] [Google Scholar]
  7. Akashi K, Richie LI, Miyamoto T, et al. B lymphopoiesis in the thymus. J Immunol 2000 ; 164 : 5221–5226. [CrossRef] [PubMed] [Google Scholar]
  8. Sugihara A, Inaba M, Mori SI, et al. Differentiation from thymic B cell progenitors to mature B cells in vitro. Immunobiology 2000 ; 201 : 515–526. [CrossRef] [PubMed] [Google Scholar]
  9. Weerkamp F, de Haas EFE, Naber BAE, et al. Age-related changes in the cellular composition of the thymus in children. J Allergy Clin Immunol 2005 ; 115 : 834–840. [CrossRef] [PubMed] [Google Scholar]
  10. Perera J, Meng L, Meng F, et al. Autoreactive thymic B cells are efficient antigen-presenting cells of cognate self-antigens for T cell negative selection. Proc Natl Acad Sci USA 2013 ; 110 : 17011–17016. [CrossRef] [Google Scholar]
  11. Nango K-I, Inaba M, Inaba K, et al. Ontogeny of thymic B cells in normal mice. Cell Immunol 1991 ; 133 : 109–115. [CrossRef] [PubMed] [Google Scholar]
  12. Luc S, Luis TC, Boukarabila H, et al. The earliest thymic T cell progenitors sustain B cell and myeloid lineage potential. Nat Immunol 2012 ; 13 : 412–419. [CrossRef] [PubMed] [Google Scholar]
  13. Mori S, Inaba M, Sugihara A, et al. Presence of B cell progenitors in the thymus. J Immunol 1997 ; 158 : 4193–4199. [PubMed] [Google Scholar]
  14. Lopez VM, Ezine S. L’épithélium thymique, un passé dans la dualité et un présent unifié. Med Sci (Paris) 2015 ; 31 : 591–593. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  15. Hashimoto Y, Montecino-Rodriguez E, Leathers H, et al. B-cell development in the thymus is limited by inhibitory signals from the thymic microenvironment. Blood 2002 ; 100 : 3504–3511. [CrossRef] [Google Scholar]
  16. Nuñez S, Moore C, Gao B, et al. The human thymus perivascular space is a functional niche for viral-specific plasma cells. Sci Immunol 2016; 1 : eaah4447. [CrossRef] [PubMed] [Google Scholar]
  17. Perera J, Zheng Z, Li S, et al. Self-antigen-driven thymic B cell class switching promotes T cell central tolerance. Cell Rep 2016 ; 17 : 387–398. [CrossRef] [PubMed] [Google Scholar]
  18. McAleer J, Weber P, Sun J, et al. Antibody repertoire development in fetal and neonatal piglets. XI. The thymic B-cell repertoire develops independently from that in blood and mesenteric lymph nodes. Immunology 2005; 114 : 171–183. [CrossRef] [PubMed] [Google Scholar]
  19. Tonnelle C, D’Ercole C, Depraetere V, et al. Human thymic B cells largely overexpress the VH4 Ig gene family. A possible role in the control of tolerance in situ?. Int Immunol 1997 ; 9 : 407–414. [CrossRef] [PubMed] [Google Scholar]
  20. Ferrero I, Anjuère F, Martín P, et al. Functional and phenotypic analysis of thymic B cells: role in the induction of T cell negative selection. Eur J Immunol 1999 ; 29 : 1598–1609. [CrossRef] [PubMed] [Google Scholar]
  21. Yamano T, Nedjic J, Hinterberger M, et al. Thymic B cells are licensed to present self antigens for central t cell tolerance induction. Immunity 2015 ; 42 : 1048–1061. [CrossRef] [PubMed] [Google Scholar]
  22. Inaba M, Inaba K, Adachi Y, et al. Functional analyses of thymic CD5+ B cells: responsiveness to major histocompatibility complex class II−restricted T blasts but not to lipopolysaccharide or anti-IgM plus interleukin 4. J Exp Med 1990 ; 171 : 321–326. [CrossRef] [PubMed] [Google Scholar]
  23. Inaba M, Inaba K, Fukuba Y, et al. Activation of thymic B cells by signals of CD40 molecules plus interleukin-10. Eur J Immunol 1995 ; 25 : 1244–1248. [CrossRef] [PubMed] [Google Scholar]
  24. Akirav EM, Xu Y, Ruddle NH. Resident B cells regulate thymic expression of myelin oligodendrocyte glycoprotein. J Neuroimmunol 2011 ; 235 : 33–39. [CrossRef] [PubMed] [Google Scholar]
  25. Fujihara C, Williams JA, Watanabe M, et al. T cell-B cell thymic cross-talk: maintenance and function of thymic B cells requires cognate CD40-CD40 ligand interaction. J Immunol 2014 ; 193 : 5534–5544. [CrossRef] [PubMed] [Google Scholar]
  26. Gary-Gouy H, Harriague J, Bismuth G, et al. Human CD5 promotes B-cell survival through stimulation of autocrine IL-10 production. Blood 2002 ; 100 : 4537–4543. [CrossRef] [Google Scholar]
  27. Hardy RR. B-1 B cell development. J Immunol 2006 ; 177 : 2749–2754. [CrossRef] [PubMed] [Google Scholar]
  28. Wortis HH, Teutsch M, Higer M, et al. B-cell activation by crosslinking of surface IgM or ligation of CD40 involves alternative signal pathways and results in different B-cell phenotypes. Proc Natl Acad Sci USA 1995 ; 92 : 3348–3352. [CrossRef] [Google Scholar]
  29. Xing C, Ma N, Xiao H, et al. Critical role for thymic CD19+CD5+CD1dhiIL-10+ regulatory B cells in immune homeostasis. J Leukoc Biol 2015 ; 97 : 547–556. [CrossRef] [PubMed] [Google Scholar]
  30. Rother MB, Schreurs MWJ, Kroek R, et al. The human thymus is enriched for autoreactive B cells. J Immunol 2016 ; 1501992 : [Google Scholar]
  31. Martin SW, Goodnow CC. Burst-enhancing role of the IgG membrane tail as a molecular determinant of memory. Nat Immunol 2002 ; 3 : 182–188. [CrossRef] [PubMed] [Google Scholar]
  32. Nussenzweig MC. Immune responses: Tails to teach a B cell. Curr Biol 1997 ; 7 : R355–R357. [CrossRef] [PubMed] [Google Scholar]
  33. Lopes N, Ferrier P, Irla M. Induction de la tolérance centrale dans le thymus par le facteur de transcription Aire. Med Sci (Paris) 2015 ; 31 : 742–747. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  34. Walters SN, Webster KE, Daley S, et al. A role for intrathymic B cells in the generation of natural regulatory T cells. J Immunol 2014 ; 193 : 170–176. [CrossRef] [PubMed] [Google Scholar]
  35. Lu FT, Yang W, Wang YH, et al. Thymic B cells promote thymus-derived regulatory T cell development and proliferation. J Autoimmun 2015 ; 61 : 62–72. [CrossRef] [PubMed] [Google Scholar]
  36. Savino W. The thymus is a common target organ in infectious diseases. PLoS Pathog 2006 ; 2 : e62. [CrossRef] [PubMed] [Google Scholar]
  37. Nunes-Alves C, Nobrega C, Behar SM, et al. Tolerance has its limits: how the thymus copes with infection. Trends Immunol 2013 ; 34 : 502–510. [CrossRef] [PubMed] [Google Scholar]
  38. Tullin S, Farris P, Petersen JS, et al. A pronounced thymic B cell deficiency in the spontaneously diabetic BB rat. J Immunol 1997 ; 158 : 5554–5559. [PubMed] [Google Scholar]
  39. Mackay IR, Masel M, Burnet FM. Thymic abnormality in systemic lupus erythematosus. Australas Ann Med 1964 ; 13 : 5–14. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  40. Leprince C, Cohen-Kaminsky S, Berrih-Aknin S, et al. Thymic B cells from myasthenia gravis patients are activated B cells. Phenotypic and functional analysis. J Immunol 1990 ; 145 : 2115–2122. [Google Scholar]
  41. Christensson B, Biberfeld P, Matell G. B-cell compartment in the thymus of patients with myasthenia gravis and control subjects. Ann NY Acad Sci 1988 ; 540 : 293–297. [CrossRef] [Google Scholar]
  42. Vrolix K, Fraussen J, Losen M, et al. Clonal heterogeneity of thymic B cells from early-onset myasthenia gravis patients with antibodies against the acetylcholine receptor. J Autoimmun 2014 ; 52 : 101–112. [CrossRef] [PubMed] [Google Scholar]
  43. Bergkvist KS, Nørgaard MA, Bøgsted M, et al. Characterization of memory B cells from thymus and its impact for DLBCL classification. Exp Hematol 2016 ; 44 : 982–90.e11. [CrossRef] [PubMed] [Google Scholar]
  44. Dragin N, Panse RL, Berrih-Aknin S. Prédisposition aux pathologies auto-immmunes : les hommes ne manquent pas « d’Aire ». Med Sci (Paris) 2017 ; 33 : 169–175. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  45. Sauce D, Appay V. Thymectomie et infection virale chez l’homme : arguments pour un rôle du thymus à l’âge adulte. Med Sci (Paris) 2010 ; 26 : 347–349. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  46. Geenen V. Histoire du thymus : d’un organe vestigial à la programmation de la tolérance immunitaire. Med Sci (Paris) 2017 ; 33 : 653–663. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.