Free Access
Issue
Med Sci (Paris)
Volume 33, Number 8-9, Août–Septembre 2017
Page(s) 765 - 770
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20173308022
Published online 18 September 2017
  1. Alitalo K, Tammela T, Petrova TV. Lymphangiogenesis in development and human disease. Nature 2005 ; 438 : 946–953. [CrossRef] [PubMed] [Google Scholar]
  2. Mactier RA, Khanna R, Twardowski Z, et al. Contribution of lymphatic absorption to loss of ultrafiltration and solute clearances in continuous ambulatory peritoneal dialysis. J Clin Invest 1987 ; 80 : 1311–1316. [CrossRef] [PubMed] [Google Scholar]
  3. Alitalo K. The lymphatic vasculature in disease. Nat Med 2011 ; 17 : 1371–1380. [CrossRef] [PubMed] [Google Scholar]
  4. Bernier-Latmani J, Cisarovsky C, Demir CS, et al. DLL4 promotes continuous adult intestinal lacteal regeneration and dietary fat transport. J Clin Invest 2015 ; 125 : 4572–4586. [CrossRef] [PubMed] [Google Scholar]
  5. Lim HY, Thiam CH, Yeo KP, et al. Lymphatic vessels are essential for the removal of cholesterol from peripheral tissues by SR-BI-mediated transport of HDL. Cell metab 2013 ; 17 : 671–684. [CrossRef] [PubMed] [Google Scholar]
  6. Huang LH, Elvington A, Randolph GJ. The role of the lymphatic system in cholesterol transport. Front pharmacol 2015 ; 6 : 182. [PubMed] [Google Scholar]
  7. Swartz MA. The physiology of the lymphatic system. Adv Drug Deliv Rev 2001 ; 50 : 3–20. [CrossRef] [PubMed] [Google Scholar]
  8. Swartz MA, Skobe M. Lymphatic function, lymphangiogenesis, and cancer metastasis. Microsc Res Tech 2001 ; 55 : 92–99. [CrossRef] [PubMed] [Google Scholar]
  9. Dietrich T, Bock F, Yuen D, et al. Cutting edge: lymphatic vessels, not blood vessels, primarily mediate immune rejections after transplantation. J immunol 2010 ; 184 : 535–539. [CrossRef] [PubMed] [Google Scholar]
  10. Yang Y, Oliver G. Development of the mammalian lymphatic vasculature. J Clin Invest 2014 ; 124 : 888–897. [CrossRef] [PubMed] [Google Scholar]
  11. Klotz L, Norman S, Vieira JM, et al. Cardiac lymphatics are heterogeneous in origin and respond to injury. Nature 2015 ; 522 : 62–67. [CrossRef] [PubMed] [Google Scholar]
  12. Norman S, Riley PR. Anatomy and development of the cardiac lymphatic vasculature: Its role in injury and disease. Clin Anat 2016 ; 29 : 305–315. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  13. Aspelund A, Robciuc MR, Karaman S, et al. lymphatic system in cardiovascular medicine. Circ Res 2016 ; 118 : 515–530. [PubMed] [Google Scholar]
  14. Stanczuk L, Martinez-Corral I, Ulvmar MH, et al. cKit lineage hemogenic endothelium-derived cells contribute to mesenteric lymphatic vessels. Cell rep 2015. [Google Scholar]
  15. Martinez-Corral I, Ulvmar MH, Stanczuk L, et al. Nonvenous origin of dermal lymphatic vasculature. Circ Res 2015 ; 116 : 1649–1654. [PubMed] [Google Scholar]
  16. Mortimer PS, Rockson SG. New developments in clinical aspects of lymphatic disease. J Clin Invest 2014 ; 124 : 915–921. [CrossRef] [PubMed] [Google Scholar]
  17. Garmy-Susini B, Varner JA. Roles of integrins in tumor angiogenesis and lymphangiogenesis. Lymphat Res Biol 2008 ; 6 : 155–163. [CrossRef] [PubMed] [Google Scholar]
  18. von der Weid PY, Rehal S, Ferraz JG. Role of the lymphatic system in the pathogenesis of Crohn’s disease. Curr Opin gastroenterol 2011 ; 27 : 335–341. [CrossRef] [PubMed] [Google Scholar]
  19. Huggenberger R, Ullmann S, Proulx ST, et al. Stimulation of lymphangiogenesis via VEGFR-3 inhibits chronic skin inflammation. J Exp Med 2010 ; 207 : 2255–2269. [CrossRef] [PubMed] [Google Scholar]
  20. Morfoisse F, Tatin F, Hantelys F, et al. Nucleolin promotes heat shock-associated translation of VEGF-D to promote tumor lymphangiogenesis. Cancer Res 2016 ; 76 : 4394–4405. [Google Scholar]
  21. Morfoisse F, Kuchnio A, Frainay C, et al. Hypoxia induces VEGF-C expression in metastatic tumor cells via a HIF-1alpha-independent translation-mediated mechanism. Cell Rep 2014 ; 6 : 155–167. [CrossRef] [PubMed] [Google Scholar]
  22. Bui HM, Enis D, Robciuc MR, et al. Proteolytic activation defines distinct lymphangiogenic mechanisms for VEGFC and VEGFD. J Clin Invest 2016 ; 126 : 2167–2180. [CrossRef] [PubMed] [Google Scholar]
  23. Karkkainen MJ, Haiko P, Sainio K, et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat immunol 2004 ; 5 : 74–80. [CrossRef] [PubMed] [Google Scholar]
  24. Dufies M, Giuliano S, Ambrosetti D, et al. Sunitinib stimulates expression of VEGFC by tumor cells and promotes lymphangiogenesis in clear cell renal cell carcinomas. Cancer Res 2017 ; 77 : 1212–1226. [Google Scholar]
  25. Karnezis T, Shayan R, Caesar C, et al. VEGF-D promotes tumor metastasis by regulating prostaglandins produced by the collecting lymphatic endothelium. Cancer Cell 2012 ; 21 : 181–195. [CrossRef] [PubMed] [Google Scholar]
  26. Uhley HN, Leeds SE, Sampson JJ, et al. The temporal sequence of lymph flow in the right lymphatic duct in experimental chronic pulmonary edema. Am Heart J 1966 ; 72 : 214–217. [CrossRef] [PubMed] [Google Scholar]
  27. Gloviczki P, Solti F, Szlavy L, Jellinek H. Ultrastructural and electrophysiologic changes of experimental acute cardiac lymphostasis. Lymphology 1983 ; 16 : 185–192. [PubMed] [Google Scholar]
  28. Loukas M, Abel N, Tubbs RS, et al. The cardiac lymphatic system. Clin Anat 2011 ; 24 : 684–691. [CrossRef] [PubMed] [Google Scholar]
  29. Bullon A, Huth F. Fine structure of lymphatics in the myocardium. Lymphology 1972 ; 5 : 42–48. [PubMed] [Google Scholar]
  30. Lupinski RW. Aortic fat pad and atrial fibrillation: cardiac lymphatics revisited. ANZ J Surg 2009 ; 79 : 70–74. [CrossRef] [PubMed] [Google Scholar]
  31. Ichikawa S, Uchino S, Hirata Y. Lymphatics of the cardiac chordae tendineae with particular consideration of their origin. Lymphology 1989 ; 22 : 123–131. [PubMed] [Google Scholar]
  32. Kholova I, Dragneva G, Cermakova P, et al. Lymphatic vasculature is increased in heart valves, ischaemic and inflamed hearts and in cholesterol-rich and calcified atherosclerotic lesions. Eur J Clin Invest 2011 ; 41 : 487–497. [CrossRef] [PubMed] [Google Scholar]
  33. Henri O, Pouehe C, Houssari M, et al. Selective stimulation of cardiac lymphangiogenesis reduces myocardial edema and fibrosis leading to improved cardiac function following myocardial infarction. Circulation 2016 ; 133 : 1484–1497. [CrossRef] [PubMed] [Google Scholar]
  34. Milasan A, Tessandier N, Tan S, et al. Extracellular vesicles are present in mouse lymph and their level differs in atherosclerosis. J Extracell Vesicles 2016 ; 5 : 31427. [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.