Free Access
Issue
Med Sci (Paris)
Volume 33, Number 8-9, Août–Septembre 2017
Page(s) 758 - 764
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20173308021
Published online 18 September 2017
  1. Grosclaude P, Belot A, Daubisse Marliac L, et al. Le cancer de la prostate, évolution de l’incidence et de la mortalité en France entre 1980 et 2011. Progrès en Urologie 2015 : 25 : 536–542. [Google Scholar]
  2. Dehm SM, Tindall DJ. Androgen receptor structural and functional elements: role and regulation in prostate cancer. Mol Endocrinol 2007 ; 21 : 2855–2863. [Google Scholar]
  3. Labrie F, Cusan L, Gomez JL, et al. De la biologie à la clinique : le décès dû au cancer de la prostate peut-il maintenant être une exception ?. Med Sci (Paris) 2003 ; 19 : 910–919. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  4. Taplin ME. Drug insight: role of the androgen receptor in the development and progression of prostate cancer. Nat Clin Pr Oncol 2007 ; 4 : 236–244. [CrossRef] [Google Scholar]
  5. Azad AA, Zoubeidi A, Gleave ME, et al. Targeting heat shock proteins in metastatic castration-resistant prostate cancer. Nat Rev Urol 2015 ; 12 : 26–36. [CrossRef] [PubMed] [Google Scholar]
  6. Zarif JC, Miranti CK. The importance of non-nuclear AR signaling in prostate cancer progression and therapeutic resistance. Cell Signal 2016 ; 28 : 348–356. [CrossRef] [PubMed] [Google Scholar]
  7. Attard G, Parker C, Eeles RA, et al. Prostate cancer. Lancet 2016 ; 387 : 70–82. [CrossRef] [PubMed] [Google Scholar]
  8. Labrie F. Blockade of testicular and adrenal androgens in prostate cancer treatment. Nat Rev Urol 2011 ; 8 : 73–85. [CrossRef] [PubMed] [Google Scholar]
  9. Tran C, Ouk S, Clegg NJ, et al. Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science 2009 ; 324 : 787–790. [Google Scholar]
  10. Fizazi K, Scher HI, Molina A, et al. Abiraterone acetate for treatment of metastatic castration-resistant prostate cancer: final overall survival analysis of the COU-AA-301 randomised, double-blind, placebo-controlled phase 3 study. Lancet Oncol 2012 ; 13 : 983–992. [CrossRef] [PubMed] [Google Scholar]
  11. Narayanan S, Srinivas S, Feldman D. Androgen-glucocorticoid interactions in the era of novel prostate cancer therapy. Nat Rev Urol 2016 ; 13 : 47–60. [CrossRef] [PubMed] [Google Scholar]
  12. Egan A, Dong Y, Zhang H, et al. Castration-resistant prostate cancer: adaptive responses in the androgen axis. Cancer Treat Rev 2014 ; 40 : 426–433. [CrossRef] [PubMed] [Google Scholar]
  13. Katsogiannou M, Ziouziou H, Karaki S, et al. The hallmarks of castration-resistant prostate cancers. Cancer Treat Rev 2015 ; 41 : 588–597. [CrossRef] [PubMed] [Google Scholar]
  14. Hearn JWD, AbuAli G, Reichard CA, et al. HSD3B1 and resistance to androgen-deprivation therapy in prostate cancer: a retrospective, multicohort study. Lancet. Oncol 2016 ; 17 : 1435–1444. [CrossRef] [PubMed] [Google Scholar]
  15. Linja MJ, Savinainen KJ, Saramäki OR, et al. Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer. Cancer Res 2001 ; 61 : 3550–3555. [Google Scholar]
  16. Mani R-S. The emerging role of speckle-type POZ protein (SPOP) in cancer development. Drug Discov Today 2014 ; 19 : 1498–1502. [CrossRef] [PubMed] [Google Scholar]
  17. Perner S, Cronauer M V, Schrader AJ, et al. Adaptive responses of androgen receptor signaling in castration-resistant prostate cancer. Oncotarget 2015 ; 6 : 35542–35555. [CrossRef] [PubMed] [Google Scholar]
  18. Bergerat JP, Céraline J. Pleiotropic functional properties of androgen receptor mutants in prostate cancer. Hum Mutat 2009 ; 30 : 145–157. [CrossRef] [PubMed] [Google Scholar]
  19. Gottlieb B, Beitel LK, Nadarajah A, et al. The androgen receptor gene mutations database: 2012 update. Hum Mutat 2012 ; 33 : 887–894. [CrossRef] [PubMed] [Google Scholar]
  20. Céraline J, Erdmann E, Erbs P, et al. A yeast-based functional assay for the detection of the mutant androgen receptor in prostate cancer. Eur J Endocrinol 2003 ; 148 : 99–109. [Google Scholar]
  21. Derycke LDM, Bracke ME, Hagberg Thulin M, et al. Androgen receptor mutations in prostate cancer. Cell 2014 ; 6 : 1180–1189. [Google Scholar]
  22. Joseph JD, Lu N, Qian J, et al. A clinically relevant androgen receptor mutation confers resistance to second-generation antiandrogens Enzalutamide and ARN-509. Cancer Discov 2013 ; 3 : 1020–1029. [CrossRef] [PubMed] [Google Scholar]
  23. Libertini SJ, Tepper CG, Rodriguez V, et al. Evidence for calpain-mediated androgen receptor cleavage as a mechanism for androgen independence. Cancer Res 2007 ; 67 : 9001–9005. [Google Scholar]
  24. Mudryj M, Tepper CG. On the origins of the androgen receptor low molecular weight species. Horm Cancer 2013 ; 4 : 259–269. [Google Scholar]
  25. Céraline J, Cruchant MD, Erdmann E, et al. Constitutive activation of the androgen receptor by a point mutation in the hinge region: a new mechanism for androgen-independent growth in prostate cancer. Int J Cancer 2004 ; 108 : 152–157. [CrossRef] [PubMed] [Google Scholar]
  26. Lapouge G, Erdmann E, Marcias G, et al. Unexpected paracrine action of prostate cancer cells harboring a new class of androgen receptor mutation. A new paradigm for cooperation among prostate tumor cells. Int J Cancer 2007 ; 121 : 1238–1244. [CrossRef] [PubMed] [Google Scholar]
  27. Liu LL, Xie N, Sun S, et al. Mechanisms of the androgen receptor splicing in prostate cancer cells. Oncogene 2014 ; 33 : 3140–3150. [Google Scholar]
  28. Li Y, Hwang TH, Oseth L, et al. AR intragenic deletions linked to androgen receptor splice variant expression and activity in models of prostate cancer progression. Oncogene 2012; 31 : 4759–4767. [Google Scholar]
  29. Nakata D, Nakao S, Nakayama K, et al. The RNA helicase DDX39B and its paralog DDX39A regulate androgen receptor splice variant AR-V7 generation. Biochem Biophys Res Commun 2017 ; 483 : 271–276. [Google Scholar]
  30. Antonarakis ES, Armstrong AJ, Dehm SM, et al. Androgen receptor variant-driven prostate cancer: clinical implications and therapeutic targeting. Prostate Cancer Prostatic Dis 2016 ; 19 : 231–241. [CrossRef] [PubMed] [Google Scholar]
  31. Hörnberg E, Ylitalo EB, Crnalic S, et al. Expression of androgen receptor splice variants in prostate cancer bone metastases is associated with castration-resistance and short survival. PLoS One 2011 ; 6 : e19059. [CrossRef] [PubMed] [Google Scholar]
  32. Guo Z, Yang X, Sun F, et al. A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth. Cancer Res 2009 ; 69 : 2305–2313. [Google Scholar]
  33. Antonarakis ES, Lu C, Wang H, et al. [AR]-[V]7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med 2014 ; 371 : 1028–1038. [Google Scholar]
  34. Bernemann C, Schnoeller TJ, Luedeke M, et al. Expression of AR-V7 in circulating tumour cells does not preclude response to next generation androgen deprivation therapy in patients with castration resistant prostate cancer. Eur Urol 2017 ; 71 : 1–3. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  35. Xu D, Zhan Y, Qi Y, et al. Androgen receptor splice variants dimerize to transactivate target genes. Cancer Res 2015 ; 75 : 3663–3671. [Google Scholar]
  36. Hu R, Lu C, Mostaghel E, et al. Distinct transcriptional programs mediated by the ligand-dependent full-length androgen receptor and its splice variants in castration-resistant prostate cancer. Cancer Res 2012 ; 72 : 3457–3462. [Google Scholar]
  37. Mediwala SN, Sun H, Szafran AT, et al. The activity of the androgen receptor variant AR-V7 is regulated by FOXO1 in a PTEN-PI3K-AKT-dependent way. Prostate 2013 ; 73 : 267–277. [CrossRef] [PubMed] [Google Scholar]
  38. Peacock SO, Fahrenholtz CD, Burnstein KL. Vav3 enhances androgen receptor splice variant activity and is critical for castration-resistant prostate cancer growth and survival. Mol Endocrinol 2012 ; 26 : 1967–1979. [Google Scholar]
  39. Cottard F, Asmane I, Erdmann E, et al. Constitutively active androgen receptor variants upregulate expression of mesenchymal markers in prostate cancer cells. PLoS One 2013 ; 8 : [Google Scholar]
  40. Liu G, Sprenger C, Sun S, et al. AR variant ARv567es induces carcinogenesis in a novel transgenic mouse model of prostate cancer. Neoplasia 2013 ; 15 : 1009–1017. [Google Scholar]
  41. Sun F, Chen HGHG, Li W, et al. Androgen receptor splice variant AR3 promotes prostate cancer via modulating expression of autocrine/paracrine factors. J Biol Chem 2014 ; 289 : 1529–1539. [CrossRef] [PubMed] [Google Scholar]
  42. Kong D, Sethi S, Li Y, et al. Androgen receptor splice variants contribute to prostate cancer aggressiveness through induction of EMT and expression of stem cell marker genes. Prostate 2015 ; 75 : 161–174. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  43. Tsai HC, Boucher DL, Martinez A, et al. Modeling truncated AR expression in a natural androgen responsive environment and identification of RHOB as a direct transcriptional target. PLoS One 2012 ; 7 : e49887. [CrossRef] [PubMed] [Google Scholar]
  44. Di Zazzo E, Galasso G, Giovannelli P, et al. Prostate cancer stem cells: the role of androgen and estrogen receptors. Oncotarget 2016 ; 7 : 193–208. [CrossRef] [PubMed] [Google Scholar]
  45. Deng Q, Tang DG. Androgen receptor and prostate cancer stem cells: biological mechanisms and clinical implications. Endocr Relat Cancer 2015 ; 22 : T209–T220. [Google Scholar]
  46. Jeter CR, Liu B, Liu X, et al. NANOG promotes cancer stem cell characteristics and prostate cancer resistance to androgen deprivation. Oncogene 2011 ; 30 : 3833–3845. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.