Free Access
Med Sci (Paris)
Volume 33, Number 8-9, Août–Septembre 2017
Page(s) 749 - 757
Section M/S Revues
Published online 18 September 2017
  1. Baudouin C, Creuzot-Garcher C, Hoang-Xuan T, et al. Severe impairment of health-related quality of life in patients suffering from ocular surface diseases. J Fr Ophtalmol 2008 ; 31 : 369–378. [CrossRef] [PubMed] [Google Scholar]
  2. Belmonte C, Acosta MC, Merayo-Lloves J, Gallar J. What causes eye pain?. Curr Ophthalmol Rep 2015 ; 3 : 111–121. [CrossRef] [PubMed] [Google Scholar]
  3. Rosenthal P, Borsook D. The corneal pain system. Part I: the missing piece of the dry eye puzzle. Ocul Surf 2012 ; 10 : 2–14. [CrossRef] [PubMed] [Google Scholar]
  4. May CA. Description and function of the ciliary nerves: some historical remarks on choroidal innervation. Exp Eye Res 1997 ; 65 : 1–5. [CrossRef] [PubMed] [Google Scholar]
  5. Muller LJ, Marfurt CF, Kruse F, Tervo TM. Corneal nerves: structure, contents and function. Exp Eye Res 2003 ; 76 : 521–542. [CrossRef] [PubMed] [Google Scholar]
  6. Belmonte C, Aracil A, Acosta MC, et al. Nerves and sensations from the eye surface. Ocul Surf 2004 ; 2 : 248–253. [CrossRef] [PubMed] [Google Scholar]
  7. Launay PS, Godefroy D, Khabou H, et al. Combined 3DISCO clearing method, retrograde tracer and ultramicroscopy to map corneal neurons in a whole adult mouse trigeminal ganglion. Exp Eye Res 2015 ; 139 : 136–143. [CrossRef] [PubMed] [Google Scholar]
  8. Felipe CD, Gonzalez GG, Gallar J, Belmonte C. Quantification and immunocytochemical characteristics of trigeminal ganglion neurons projecting to the cornea: effect of corneal wounding. Eur J Pain 1999 ; 3 : 31–39. [CrossRef] [PubMed] [Google Scholar]
  9. Bron R, Wood RJ, Brock JA, Ivanusic JJ. Piezo2 expression in corneal afferent neurons. J Comp Neurol 2014 ; 522 : 2967–2979. [CrossRef] [PubMed] [Google Scholar]
  10. De Felipe C, Belmonte C. c-Jun expression after axotomy of corneal trigeminal ganglion neurons is dependent on the site of injury. Eur J Neurosci 1999 ; 11 : 899–906. [CrossRef] [PubMed] [Google Scholar]
  11. Price TJ, Flores CM. Critical evaluation of the colocalization between calcitonin gene-related peptide, substance P, transient receptor potential vanilloid subfamily type 1 immunoreactivities, and isolectin B4 binding in primary afferent neurons of the rat and mouse. J Pain 2007 ; 8 : 263–272. [Google Scholar]
  12. Ivanusic JJ, Wood RJ, Brock JA. Sensory and sympathetic innervation of the mouse and guinea pig corneal epithelium. J Comp Neurol 2013 ; 521 : 877–893. [CrossRef] [PubMed] [Google Scholar]
  13. Jones MA, Marfurt CF. Peptidergic innervation of the rat cornea. Exp Eye Res 1998 ; 66 : 421–435. [CrossRef] [PubMed] [Google Scholar]
  14. Belmonte C, Acosta MC, Gallar J. Neural basis of sensation in intact and injured corneas. Exp Eye Res 2004 ; 78 : 513–525. [CrossRef] [PubMed] [Google Scholar]
  15. Belmonte C, Gallar J. Cold thermoreceptors, unexpected players in tear production and ocular dryness sensations. Invest Ophthalmol Vis Sci 2011 ; 52 : 3888–3892. [CrossRef] [PubMed] [Google Scholar]
  16. Hirata H, Rosenblatt MI. Hyperosmolar tears enhance cooling sensitivity of the corneal nerves in rats: possible neural basis for cold-induced dry eye pain. Invest Ophthalmol Vis Sci 2014 ; 55 : 5821–5833. [CrossRef] [PubMed] [Google Scholar]
  17. Callejo G, Castellanos A, Castany M, et al. Acid-sensing ion channels detect moderate acidifications to induce ocular pain. Pain 2015 ; 156 : 483–495. [CrossRef] [PubMed] [Google Scholar]
  18. Dallel R, Villanueva L, Woda A, Voisin D. Neurobiologie de la douleur trigéminale. Med Sci (Paris) 2003 ; 19 : 567–574. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  19. Aicher SA, Hegarty DM, Hermes SM. Corneal pain activates a trigemino-parabrachial pathway in rats. Brain Res 2014 ; 1550 : 18–26. [CrossRef] [PubMed] [Google Scholar]
  20. Meng ID, Bereiter DA. Differential distribution of Fos-like immunoreactivity in the spinal trigeminal nucleus after noxious and innocuous thermal and chemical stimulation of rat cornea. Neuroscience 1996 ; 72 : 243–254. [Google Scholar]
  21. Panneton WM, Hsu H, Gan Q. Distinct central representations for sensory fibers innervating either the conjunctiva or cornea of the rat. Exp Eye Res 2010 ; 90 : 388–396. [CrossRef] [PubMed] [Google Scholar]
  22. Dauvergne C, Molet J, Reaux-Le Goazigo A, et al. Implication of the chemokine CCL2 in trigeminal nociception and traumatic neuropathic orofacial pain. Eur J Pain 2014 ; 18 : 360–315. [CrossRef] [PubMed] [Google Scholar]
  23. Scholz J, Woolf CJ. The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci 2007 ; 10 : 1361–1368. [CrossRef] [PubMed] [Google Scholar]
  24. Van Steenwinckel J, Auvynet C, Sapienza A, et al. Stromal cell-derived CCL2 drives neuropathic pain states through myeloid cell infiltration in injured nerve. Brain Behav Immun 2015 ; 45 : 198–210. [CrossRef] [PubMed] [Google Scholar]
  25. Grace PM, Hutchinson MR, Maier SF, Watkins LR. Pathological pain and the neuroimmune interface. Nat Rev Immunol 2014 ; 14 : 217–231. [CrossRef] [PubMed] [Google Scholar]
  26. Acosta MC, Luna C, Quirce S, et al. Changes in sensory activity of ocular surface sensory nerves during allergic keratoconjunctivitis. Pain 2013 ; 154 : 2353–2362. [CrossRef] [PubMed] [Google Scholar]
  27. Launay PS, Reboussin E, Liang H, et al. Ocular inflammation induces trigeminal pain, peripheral and central neuroinflammatory mechanisms. Neurobiol Dis 2016 ; 88 : 16–28. [CrossRef] [PubMed] [Google Scholar]
  28. Dosa S, Castellanos K, Bacsa S, et al. Chronic progressive deficits in neuron size, density and number in the trigeminal ganglia of mice latently infected with herpes simplex virus. Brain Pathol 2011 ; 21 : 583–593. [PubMed] [Google Scholar]
  29. Ferrari G, Bignami F, Giacomini C, et al. Ocular surface injury induces inflammation in the brain: in vivo and ex vivo evidence of a corneal-trigeminal axis. Invest Ophthalmol Vis Sci 2014 ; 55 : 6289–6300. [CrossRef] [PubMed] [Google Scholar]
  30. Melik Parsadaniantz S, Rivat C, Rostene W, Reaux-Le Goazigo A. Opioid and chemokine receptor crosstalk: a promising target for pain therapy? Nat Rev Neurosci 2015; 16 : 69–78. [CrossRef] [PubMed] [Google Scholar]
  31. Rahman M, Okamoto K, Thompson R, et al. Sensitization of trigeminal brainstem pathways in a model for tear deficient dry eye. Pain 2015 ; 156 : 942–950. [CrossRef] [PubMed] [Google Scholar]
  32. Katagiri A, Thompson R, Rahman M, et al. Evidence for TRPA1 involvement in central neural mechanisms in a rat model of dry eye. Neuroscience 2015 ; 290 : 204–213. [Google Scholar]
  33. Stapleton F, Marfurt C, Golebiowski B, et al. The TFOS international workshop on contact lens discomfort: report of the subcommittee on neurobiology. Invest Ophthalmol Vis Sci 2013; 54 : TFOS71–97. [CrossRef] [PubMed] [Google Scholar]
  34. Farazifard R, Safarpour F, Sheibani V, Javan M. Eye-wiping test: a sensitive animal model for acute trigeminal pain studies. Brain Res Brain Res Protoc 2005 ; 16 : 44–49. [CrossRef] [PubMed] [Google Scholar]
  35. Baudouin C, Labbe A, Liang H, et al. Preservatives in eyedrops: the good, the bad and the ugly. Prog Retin Eye Res 2010 ; 29 : 312–334. [CrossRef] [PubMed] [Google Scholar]
  36. Aggarwal S, Kheirkhah A, Cavalcanti BM, et al. Autologous serum tears for treatment of photoallodynia in patients with corneal neuropathy: efficacy and evaluation with in vivo confocal microscopy. Ocul Surf 2015 ; 13 : 250–262. [CrossRef] [PubMed] [Google Scholar]
  37. Rosenthal P, Borsook D. Ocular neuropathic pain. Br J Ophthalmol 2016 ; 100 : 128–134. [CrossRef] [PubMed] [Google Scholar]
  38. Qazi Y, Hurwitz S, Khan S, et al. Validity and reliability of a novel ocular pain assessment survey (OPAS) in quantifying and monitoring corneal and ocular surface pain. Ophthalmology 2016 ; 123 : 1458–1468. [Google Scholar]
  39. Labbe A, Liang Q, Wang Z, et al. Corneal nerve structure and function in patients with non-sjogren dry eye: clinical correlations. Invest Ophthalmol Vis Sci 2013 ; 54 : 5144–5150. [CrossRef] [PubMed] [Google Scholar]
  40. Hamrah P, Qazi Y, Shahatit B, et al. Corneal nerve and epithelial cell alterations in corneal allodynia: an in vivo confocal microscopy case series. Ocul Surf 2017 ; 15 : 139–151. [CrossRef] [PubMed] [Google Scholar]
  41. Goyal S, Hamrah P. Understanding neuropathic corneal pain-gaps and current therapeutic approaches. Semin Ophthalmol 2016 ; 31 : 59–70. [CrossRef] [PubMed] [Google Scholar]
  42. Brignole-Baudouin F, Ott AC, Warnet JM, Baudouin C. Flow cytometry in conjunctival impression cytology: a new tool for exploring ocular surface pathologies. Exp Eye Res 2004 ; 78 : 473–481. [CrossRef] [PubMed] [Google Scholar]
  43. Labbe A, Gheck L, Iordanidou V, et al. An in vivo confocal microscopy and impression cytology evaluation of pterygium activity. Cornea 2010 ; 29 : 392–399. [CrossRef] [PubMed] [Google Scholar]
  44. Gabison EE, Chastang P, Menashi S, et al. Late corneal perforation after photorefractive keratectomy associated with topical diclofenac: involvement of matrix metalloproteinases. Ophthalmology 2003 ; 110 : 1626–1631. [Google Scholar]
  45. Asbell PA, Spiegel S. Ophthalmologist perceptions regarding treatment of moderate-to-severe dry eye: results of a physician survey. Eye Contact Lens 2010 ; 36 : 33–38. [CrossRef] [PubMed] [Google Scholar]
  46. Patel M, Fraunfelder FW. Toxicity of topical ophthalmic anesthetics. Expert Opin Drug Metab Toxicol 2013 ; 9 : 983–988. [CrossRef] [PubMed] [Google Scholar]
  47. Chiu IM, von Hehn CA, Woolf CJ. Neurogenic inflammation and the peripheral nervous system in host defense and immunopathology. Nat Neurosci 2012 ; 15 : 1063–1067. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.