Accès gratuit
Numéro |
Med Sci (Paris)
Volume 33, Numéro 8-9, Août–Septembre 2017
|
|
---|---|---|
Page(s) | 771 - 778 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/20173308023 | |
Publié en ligne | 18 septembre 2017 |
- Isaacson PG, Norton AJ, Addis BJ. The human thymus contains a novel population of B lymphocytes. Lancet 1987 ; 2 : 1488–1491. [CrossRef] [PubMed] [Google Scholar]
- Spencer J, Choy M, Hussell T, et al. Properties of human thymic B cells. Immunology 1992 ; 75 : 596–600. [PubMed] [Google Scholar]
- Fend F, Nachbaur D, Oberwasserlechner F, et al. Phenotype and topography of human thymic B cells. An immunohistologic study. Virchows Arch B Cell Pathol Incl Mol Pathol 1991 ; 60 : 381–388. [CrossRef] [PubMed] [Google Scholar]
- Klein L, Kyewski B, Allen PM, et al. Positive and negative selection of the T cell repertoire: what thymocytes see (and don’t see). Nat Rev Immunol 2014 ; 14 : 377–391. [CrossRef] [PubMed] [Google Scholar]
- Dunn-Walters DK, Howe CJ, Isaacson PG, et al. Location and sequence of rearranged immunoglobulin genes in human thymus. Eur J Immunol 1995 ; 25 : 513–519. [CrossRef] [PubMed] [Google Scholar]
- Gies V, Guffroy A, Danion F, et al. B cells differentiate in human thymus and express AIRE. J Allergy Clin Immunol 2017 ; 139 : 1049–52.e12. [CrossRef] [PubMed] [Google Scholar]
- Akashi K, Richie LI, Miyamoto T, et al. B lymphopoiesis in the thymus. J Immunol 2000 ; 164 : 5221–5226. [CrossRef] [PubMed] [Google Scholar]
- Sugihara A, Inaba M, Mori SI, et al. Differentiation from thymic B cell progenitors to mature B cells in vitro. Immunobiology 2000 ; 201 : 515–526. [CrossRef] [PubMed] [Google Scholar]
- Weerkamp F, de Haas EFE, Naber BAE, et al. Age-related changes in the cellular composition of the thymus in children. J Allergy Clin Immunol 2005 ; 115 : 834–840. [CrossRef] [PubMed] [Google Scholar]
- Perera J, Meng L, Meng F, et al. Autoreactive thymic B cells are efficient antigen-presenting cells of cognate self-antigens for T cell negative selection. Proc Natl Acad Sci USA 2013 ; 110 : 17011–17016. [CrossRef] [Google Scholar]
- Nango K-I, Inaba M, Inaba K, et al. Ontogeny of thymic B cells in normal mice. Cell Immunol 1991 ; 133 : 109–115. [CrossRef] [PubMed] [Google Scholar]
- Luc S, Luis TC, Boukarabila H, et al. The earliest thymic T cell progenitors sustain B cell and myeloid lineage potential. Nat Immunol 2012 ; 13 : 412–419. [CrossRef] [PubMed] [Google Scholar]
- Mori S, Inaba M, Sugihara A, et al. Presence of B cell progenitors in the thymus. J Immunol 1997 ; 158 : 4193–4199. [PubMed] [Google Scholar]
- Lopez VM, Ezine S. L’épithélium thymique, un passé dans la dualité et un présent unifié. Med Sci (Paris) 2015 ; 31 : 591–593. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Hashimoto Y, Montecino-Rodriguez E, Leathers H, et al. B-cell development in the thymus is limited by inhibitory signals from the thymic microenvironment. Blood 2002 ; 100 : 3504–3511. [CrossRef] [Google Scholar]
- Nuñez S, Moore C, Gao B, et al. The human thymus perivascular space is a functional niche for viral-specific plasma cells. Sci Immunol 2016; 1 : eaah4447. [CrossRef] [PubMed] [Google Scholar]
- Perera J, Zheng Z, Li S, et al. Self-antigen-driven thymic B cell class switching promotes T cell central tolerance. Cell Rep 2016 ; 17 : 387–398. [CrossRef] [PubMed] [Google Scholar]
- McAleer J, Weber P, Sun J, et al. Antibody repertoire development in fetal and neonatal piglets. XI. The thymic B-cell repertoire develops independently from that in blood and mesenteric lymph nodes. Immunology 2005; 114 : 171–183. [CrossRef] [PubMed] [Google Scholar]
- Tonnelle C, D’Ercole C, Depraetere V, et al. Human thymic B cells largely overexpress the VH4 Ig gene family. A possible role in the control of tolerance in situ?. Int Immunol 1997 ; 9 : 407–414. [CrossRef] [PubMed] [Google Scholar]
- Ferrero I, Anjuère F, Martín P, et al. Functional and phenotypic analysis of thymic B cells: role in the induction of T cell negative selection. Eur J Immunol 1999 ; 29 : 1598–1609. [CrossRef] [PubMed] [Google Scholar]
- Yamano T, Nedjic J, Hinterberger M, et al. Thymic B cells are licensed to present self antigens for central t cell tolerance induction. Immunity 2015 ; 42 : 1048–1061. [CrossRef] [PubMed] [Google Scholar]
- Inaba M, Inaba K, Adachi Y, et al. Functional analyses of thymic CD5+ B cells: responsiveness to major histocompatibility complex class II−restricted T blasts but not to lipopolysaccharide or anti-IgM plus interleukin 4. J Exp Med 1990 ; 171 : 321–326. [CrossRef] [PubMed] [Google Scholar]
- Inaba M, Inaba K, Fukuba Y, et al. Activation of thymic B cells by signals of CD40 molecules plus interleukin-10. Eur J Immunol 1995 ; 25 : 1244–1248. [CrossRef] [PubMed] [Google Scholar]
- Akirav EM, Xu Y, Ruddle NH. Resident B cells regulate thymic expression of myelin oligodendrocyte glycoprotein. J Neuroimmunol 2011 ; 235 : 33–39. [CrossRef] [PubMed] [Google Scholar]
- Fujihara C, Williams JA, Watanabe M, et al. T cell-B cell thymic cross-talk: maintenance and function of thymic B cells requires cognate CD40-CD40 ligand interaction. J Immunol 2014 ; 193 : 5534–5544. [CrossRef] [PubMed] [Google Scholar]
- Gary-Gouy H, Harriague J, Bismuth G, et al. Human CD5 promotes B-cell survival through stimulation of autocrine IL-10 production. Blood 2002 ; 100 : 4537–4543. [CrossRef] [Google Scholar]
- Hardy RR. B-1 B cell development. J Immunol 2006 ; 177 : 2749–2754. [CrossRef] [PubMed] [Google Scholar]
- Wortis HH, Teutsch M, Higer M, et al. B-cell activation by crosslinking of surface IgM or ligation of CD40 involves alternative signal pathways and results in different B-cell phenotypes. Proc Natl Acad Sci USA 1995 ; 92 : 3348–3352. [CrossRef] [Google Scholar]
- Xing C, Ma N, Xiao H, et al. Critical role for thymic CD19+CD5+CD1dhiIL-10+ regulatory B cells in immune homeostasis. J Leukoc Biol 2015 ; 97 : 547–556. [CrossRef] [PubMed] [Google Scholar]
- Rother MB, Schreurs MWJ, Kroek R, et al. The human thymus is enriched for autoreactive B cells. J Immunol 2016 ; 1501992 : [Google Scholar]
- Martin SW, Goodnow CC. Burst-enhancing role of the IgG membrane tail as a molecular determinant of memory. Nat Immunol 2002 ; 3 : 182–188. [CrossRef] [PubMed] [Google Scholar]
- Nussenzweig MC. Immune responses: Tails to teach a B cell. Curr Biol 1997 ; 7 : R355–R357. [CrossRef] [PubMed] [Google Scholar]
- Lopes N, Ferrier P, Irla M. Induction de la tolérance centrale dans le thymus par le facteur de transcription Aire. Med Sci (Paris) 2015 ; 31 : 742–747. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Walters SN, Webster KE, Daley S, et al. A role for intrathymic B cells in the generation of natural regulatory T cells. J Immunol 2014 ; 193 : 170–176. [CrossRef] [PubMed] [Google Scholar]
- Lu FT, Yang W, Wang YH, et al. Thymic B cells promote thymus-derived regulatory T cell development and proliferation. J Autoimmun 2015 ; 61 : 62–72. [CrossRef] [PubMed] [Google Scholar]
- Savino W. The thymus is a common target organ in infectious diseases. PLoS Pathog 2006 ; 2 : e62. [CrossRef] [PubMed] [Google Scholar]
- Nunes-Alves C, Nobrega C, Behar SM, et al. Tolerance has its limits: how the thymus copes with infection. Trends Immunol 2013 ; 34 : 502–510. [CrossRef] [PubMed] [Google Scholar]
- Tullin S, Farris P, Petersen JS, et al. A pronounced thymic B cell deficiency in the spontaneously diabetic BB rat. J Immunol 1997 ; 158 : 5554–5559. [PubMed] [Google Scholar]
- Mackay IR, Masel M, Burnet FM. Thymic abnormality in systemic lupus erythematosus. Australas Ann Med 1964 ; 13 : 5–14. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Leprince C, Cohen-Kaminsky S, Berrih-Aknin S, et al. Thymic B cells from myasthenia gravis patients are activated B cells. Phenotypic and functional analysis. J Immunol 1990 ; 145 : 2115–2122. [Google Scholar]
- Christensson B, Biberfeld P, Matell G. B-cell compartment in the thymus of patients with myasthenia gravis and control subjects. Ann NY Acad Sci 1988 ; 540 : 293–297. [CrossRef] [Google Scholar]
- Vrolix K, Fraussen J, Losen M, et al. Clonal heterogeneity of thymic B cells from early-onset myasthenia gravis patients with antibodies against the acetylcholine receptor. J Autoimmun 2014 ; 52 : 101–112. [CrossRef] [PubMed] [Google Scholar]
- Bergkvist KS, Nørgaard MA, Bøgsted M, et al. Characterization of memory B cells from thymus and its impact for DLBCL classification. Exp Hematol 2016 ; 44 : 982–90.e11. [CrossRef] [PubMed] [Google Scholar]
- Dragin N, Panse RL, Berrih-Aknin S. Prédisposition aux pathologies auto-immmunes : les hommes ne manquent pas « d’Aire ». Med Sci (Paris) 2017 ; 33 : 169–175. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Sauce D, Appay V. Thymectomie et infection virale chez l’homme : arguments pour un rôle du thymus à l’âge adulte. Med Sci (Paris) 2010 ; 26 : 347–349. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Geenen V. Histoire du thymus : d’un organe vestigial à la programmation de la tolérance immunitaire. Med Sci (Paris) 2017 ; 33 : 653–663. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.