Free Access
Issue
Med Sci (Paris)
Volume 33, Number 6-7, Juin-Juillet 2017
Page(s) 620 - 628
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20173306019
Published online 19 July 2017
  1. Fletcher JM, Lalor SJ, Sweeney CM, et al. T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin Exp Immunol 2010 ; 162 : 1–11. [Google Scholar]
  2. Zozulya AL, Wiendl H. The role of regulatory T cells in multiple sclerosis. Nat Clin Pract Neurol 2008 ; 4 : 384–398. [CrossRef] [PubMed] [Google Scholar]
  3. Disanto G, Morahan JM, Barnett MH, et al. The evidence for a role of B cells in multiple sclerosis. Neurology 2012 ; 78 : 823–832. [Google Scholar]
  4. Winter J, Jung S, Keller S, et al. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 2009 ; 11 : 228–234. [CrossRef] [PubMed] [Google Scholar]
  5. Hartmann C, Corre-Menguy F, Boualem A, et al. Les microARN: Une nouvelle classe de régulateurs de l’expression génique. Med Sci (Paris) 2004 ; 20 : 894–898. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  6. Hinault C, Dumortier O, Van Obberghen E. MicroARN et diabète : petites structures - grands effets. Med Sci (Paris) 2013 ; 29 : 785–790. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  7. McManus DD, Freedman JE. MicroRNAs in platelet function and cardiovascular disease. Nat Rev Cardiol 2015 ; 12 : 711–717. [Google Scholar]
  8. Lin S, Gregory RI. MicroRNA biogenesis pathways in cancer. Nat Rev Cancer 2015 ; 15 : 321–333. [Google Scholar]
  9. Li Y, Du C, Wang W, et al. Genetic association of MiR-146a with multiple sclerosis susceptibility in the Chinese population. Cell Physiol Biochem 2015 ; 35 : 281–291. [CrossRef] [PubMed] [Google Scholar]
  10. Kiselev I, Bashinskaya V, Kulakova O, et al. Variants of MicroRNA genes: gender-specific associations with multiple sclerosis risk and severity. Int J Mol Sci 2015 ; 16 : 20067–20081. [Google Scholar]
  11. Du C, Liu C, Kang J, et al. MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat Immunol 2009 ; 10 : 1252–1259. [CrossRef] [PubMed] [Google Scholar]
  12. Zhang J, Cheng Y, Cui W, et al. MicroRNA-155 modulates Th1 and Th17 cell differentiation and is associated with multiple sclerosis and experimental autoimmune encephalomyelitis. J Neuroimmunol 2014 ; 266 : 56–63. [CrossRef] [PubMed] [Google Scholar]
  13. Keller A, Leidinger P, Steinmeyer F, et al. Comprehensive analysis of microRNA profiles in multiple sclerosis including next-generation sequencing. Mult Scler Houndmills Basingstoke Engl 2014 ; 20 : 295–303. [CrossRef] [Google Scholar]
  14. Cox MB, Cairns MJ, Gandhi KS, et al. MicroRNAs miR-17 and miR-20a inhibit T cell activation genes and are under-expressed in MS whole blood. PLoS One 2010 ; 5 : e12132. [CrossRef] [PubMed] [Google Scholar]
  15. Junker A, Krumbholz M, Eisele S, et al. MicroRNA profiling of multiple sclerosis lesions identifies modulators of the regulatory protein CD47. Brain J Neurol 2009 ; 132 : 3342–3352. [CrossRef] [Google Scholar]
  16. Noorbakhsh F, Ellestad KK, Maingat F, et al. Impaired neurosteroid synthesis in multiple sclerosis. Brain J Neurol 2011 ; 134 : 2703–2721. [CrossRef] [Google Scholar]
  17. Dutta R, Chomyk AM, Chang A, et al. Hippocampal demyelination and memory dysfunction are associated with increased levels of the neuronal microRNA miR-124 and reduced AMPA receptors. Ann Neurol 2013 ; 73 : 637–645. [CrossRef] [PubMed] [Google Scholar]
  18. Søndergaard HB, Hesse D, Krakauer M, et al. Differential microRNA expression in blood in multiple sclerosis. Mult Scler Houndmills Basingstoke Engl 2013 ; 19 : 1849–1857. [CrossRef] [Google Scholar]
  19. Otaegui D, Baranzini SE, Armañanzas R, et al. Differential micro RNA expression in PBMC from multiple sclerosis patients. PLoS One 2009 ; 4 : e6309. [CrossRef] [PubMed] [Google Scholar]
  20. Lorenzi JCC, Brum DG, Zanette DL, et al. miR-15a and 16–1 are downregulated in CD4+ T cells of multiple sclerosis relapsing patients. Int J Neurosci 2012 ; 122 : 466–471. [Google Scholar]
  21. Sievers C, Meira M, Hoffmann F, et al. Altered microRNA expression in B lymphocytes in multiple sclerosis: towards a better understanding of treatment effects. Clin Immunol Orlando Fla 2012 ; 144 : 70–79. [CrossRef] [Google Scholar]
  22. Miyazaki Y, Li R, Rezk A, et al. A Novel MicroRNA-132-surtuin-1 axis underlies aberrant b-cell cytokine regulation in patients with relapsing-remitting multiple sclerosis. PLoS One 2014 ; 9 : e105421. [CrossRef] [PubMed] [Google Scholar]
  23. Lindberg RLP, Hoffmann F, Mehling M, et al. Altered expression of miR-17-5p in CD4+ lymphocytes of relapsing-remitting multiple sclerosis patients. Eur J Immunol 2010 ; 40 : 888–898. [CrossRef] [PubMed] [Google Scholar]
  24. Jernås M, Malmeström C, Axelsson M, et al. MicroRNA regulate immune pathways in T-cells in multiple sclerosis (MS). BMC Immunol 2013 ; 14 : 32. [CrossRef] [PubMed] [Google Scholar]
  25. Guerau-de-Arellano M, Smith KM, Godlewski J, et al. Micro-RNA dysregulation in multiple sclerosis favours pro-inflammatory T-cell-mediated autoimmunity. Brain J Neurol 2011 ; 134 : 3578–3589. [CrossRef] [Google Scholar]
  26. De Santis G, Ferracin M, Biondani A, et al. Altered miRNA expression in T regulatory cells in course of multiple sclerosis. J Neuroimmunol 2010 ; 226 : 165–171. [CrossRef] [PubMed] [Google Scholar]
  27. Moore CS, Rao VTS, Durafourt BA, et al. miR-155 as a multiple sclerosis-relevant regulator of myeloid cell polarization. Ann Neurol 2013 ; 74 : 709–720. [CrossRef] [PubMed] [Google Scholar]
  28. Reijerkerk A, Lopez-Ramirez MA, van Het Hof B, et al. MicroRNAs regulate human brain endothelial cell-barrier function in inflammation: implications for multiple sclerosis. J Neurosci 2013 ; 33 : 6857–6863. [CrossRef] [PubMed] [Google Scholar]
  29. Lopez-Ramirez MA, Wu D, Pryce G, et al. MicroRNA-155 negatively affects blood-brain barrier function during neuroinflammation. FASEB J 2014 ; 28 : 2551–2565. [CrossRef] [PubMed] [Google Scholar]
  30. Gandhi R, Healy B, Gholipour T, et al. Circulating microRNAs as biomarkers for disease staging in multiple sclerosis. Ann Neurol 2013 ; 73 : 729–740. [CrossRef] [PubMed] [Google Scholar]
  31. Siegel SR, Mackenzie J, Chaplin G, et al. Circulating microRNAs involved in multiple sclerosis. Mol Biol Rep 2012 ; 39 : 6219–6225. [CrossRef] [PubMed] [Google Scholar]
  32. Fenoglio C, Ridolfi E, Cantoni C, et al. Decreased circulating miRNA levels in patients with primary progressive multiple sclerosis. Mult Scler Houndmills Basingstoke Engl 2013 ; 19 : 1938–1942. [CrossRef] [Google Scholar]
  33. Mancuso R, Hernis A, Agostini S, et al. MicroRNA-572 expression in multiple sclerosis patients with different patterns of clinical progression. J Transl Med 2015 ; 13 : 148. [CrossRef] [PubMed] [Google Scholar]
  34. Haghikia A, Haghikia A, Hellwig K, et al. Regulated microRNAs in the CSF of patients with multiple sclerosis: a case-control study. Neurology 2012 ; 79 : 2166–2170. [Google Scholar]
  35. Jagot F, Davoust N. Is it worth considering circulating microRNAs in multiple sclerosis ?. Front Immunol 2016 ; 7 : 129. [CrossRef] [PubMed] [Google Scholar]
  36. Murugaiyan G, da Cunha AP, Ajay AK, et al. MicroRNA-21 promotes Th17 differentiation and mediates experimental autoimmune encephalomyelitis. J Clin Invest 2015 ; 125 : 1069–1080. [CrossRef] [PubMed] [Google Scholar]
  37. O’Connell RM, Kahn D, Gibson WSJ, et al. MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity 2010 ; 33 : 607–619. [CrossRef] [PubMed] [Google Scholar]
  38. El-behi M, Rostami A, Ciric B. Current views on the roles of Th1 and Th17 cells in experimental autoimmune encephalomyelitis. J Neuroimmune Pharmacol 2010 ; 5 : 189–197. [Google Scholar]
  39. Mycko MP, Cichalewska M, Machlanska A, et al. MicroRNA-301a regulation of a T-helper 17 immune response controls autoimmune demyelination. Proc Natl Acad Sci USA 2012 ; 109 : E1248–E1257. [CrossRef] [Google Scholar]
  40. Bettelli E, Sullivan B, Szabo SJ, et al. Loss of T-bet, but not STAT1, prevents the development of experimental autoimmune encephalomyelitis. J Exp Med 2004 ; 200 : 79–87. [CrossRef] [PubMed] [Google Scholar]
  41. Ivanov II, McKenzie BS, Zhou L, et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 2006 ; 126 : 1121–1133. [CrossRef] [PubMed] [Google Scholar]
  42. Haak S, Croxford AL, Kreymborg K, et al. IL-17A and IL-17F do not contribute vitally to autoimmune neuro-inflammation in mice. J Clin Invest 2009 ; 119 : 61–69. [PubMed] [Google Scholar]
  43. Ferber IA, Brocke S, Taylor-Edwards C, et al. Mice with a disrupted IFN-gamma gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE). J Immunol 1996 ; 156 : 5–7. [PubMed] [Google Scholar]
  44. Matusevicius D, Kivisäkk P, He B, et al. Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis. Mult Scler Houndmills Basingstoke Engl 1999 ; 5 : 101–104. [CrossRef] [EDP Sciences] [Google Scholar]
  45. Tzartos JS, Friese MA, Craner MJ, et al. Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am J Pathol 2008 ; 172 : 146–155. [CrossRef] [PubMed] [Google Scholar]
  46. Ponomarev ED, Veremeyko T, Barteneva N, et al. MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-α-PU.1 pathway. Nat Med 2011 ; 17 : 64–70. [CrossRef] [PubMed] [Google Scholar]
  47. Goldmann T, Prinz M. Role of microglia in CNS autoimmunity. J Immunol Res 2013 ; 2013 : e208093. [Google Scholar]
  48. Weber JA, Baxter DH, Zhang S, et al. The microRNA spectrum in 12 body fluids. Clin Chem 2010 ; 56 : 1733–1741. [CrossRef] [PubMed] [Google Scholar]
  49. Baulande S, Criqui A, Duthieuw M. Les microARN circulants, une nouvelle classe de biomarqueurs pour la médecine. Med Sci (Paris) 2014 ; 30 : 289–296. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  50. Okoye IS, Coomes SM, Pelly VS, et al. MicroRNA-containing T-regulatory-cell-derived exosomes suppress pathogenic T helper 1 cells. Immunity 2014 ; 41 : 89–103. [CrossRef] [PubMed] [Google Scholar]
  51. Walker JD, Maier CL, Pober JS. Cytomegalovirus-infected human endothelial cells can stimulate allogeneic CD4+ memory T cells by releasing antigenic exosomes. J Immunol 2009 ; 182 : 1548–1559. [CrossRef] [PubMed] [Google Scholar]
  52. Ridder K, Keller S, Dams M, et al. Extracellular vesicle-mediated transfer of genetic information between the hematopoietic system and the brain in response to inflammation. PLoS Biol 2014 ; 12 : e1001874. [CrossRef] [PubMed] [Google Scholar]
  53. Hoy AM, Buck AH. Extracellular small RNAs: what, where, why ?. Biochem Soc Trans 2012 ; 40 : 886–890. [CrossRef] [PubMed] [Google Scholar]
  54. Waschbisch A, Atiya M, Linker RA, et al. Glatiramer acetate treatment normalizes deregulated microRNA expression in relapsing remitting multiple sclerosis. PLoS One 2011 ; 6 : e24604. [CrossRef] [PubMed] [Google Scholar]
  55. Meira M, Sievers C, Hoffmann F, et al. MiR-126: a novel route for natalizumab action ?. Mult Scler Houndmills Basingstoke Engl 2014 ; 20 : 1363–1370. [CrossRef] [Google Scholar]
  56. Meira M, Sievers C, Hoffmann F, et al. Unraveling natalizumab effects on deregulated miR-17 expression in CD4+ T cells of patients with relapsing-remitting multiple sclerosis. J Immunol Res 2014 ; 2014 : 897249. [CrossRef] [PubMed] [Google Scholar]
  57. Sáenz-Cuesta M, Osorio-Querejeta I, Otaegui D. Extracellular vesicles in multiple sclerosis: What are they telling us ?. Front Cell Neurosci 2014 ; 8 : 100. [PubMed] [Google Scholar]
  58. Pinet F. BautersC. Potentiel des ARN non codants comme biomarqueurs dans l’insuffisance cardiaque. Med Sci (Paris) 2015 ; 31 : 770–776. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.