Free Access
Issue
Med Sci (Paris)
Volume 33, Number 6-7, Juin-Juillet 2017
Page(s) 629 - 636
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20173306020
Published online 19 July 2017
  1. Biering-Sorensen F, Nielsen JB, Klinge K. Spasticity-assessment : a review. Spinal Cord 2006 ; 44 : 708–722. [CrossRef] [PubMed] [Google Scholar]
  2. Sommerfeld DK, Eek EU, Svensson AK, et al. Spasticity after stroke : its occurrence and association with motor impairments and activity limitations. Stroke 2004 ; 35 : 134–139. [CrossRef] [PubMed] [Google Scholar]
  3. Kiernan MC, Vucic S, Cheah BC, et al. Amyotrophic lateral sclerosis. Lancet 2011 ; 377 : 942–955. [CrossRef] [PubMed] [Google Scholar]
  4. Lance JW. The control of muscle tone, reflexes, and movement: Robert Wartenberg lecture. Neurology 1980 ; 30 : 1303–1313. [CrossRef] [PubMed] [Google Scholar]
  5. Mukherjee A, Chakravarty A. Spasticity mechanisms – for the clinician. Front Neurol 2010 ; 1 : 149. [CrossRef] [PubMed] [Google Scholar]
  6. Bennett DJ, Gorassini M, Fouad K, et al. Spasticity in rats with sacral spinal cord injury. J Neurotrauma 1999 ; 16 : 69–84. [CrossRef] [PubMed] [Google Scholar]
  7. Bellardita C, Caggiano V, Leiras R, et al. Spatiotemporal correlation of spinal network dynamics underlying spasms in chronic spinalized mice. Elife 2017 ; 13 : 6. [Google Scholar]
  8. Gillard PJ, Sucharew H, Kleindorfer et al. The negative impact of spasticity on the health-related quality of life of stroke survivors: a longitudinal cohort study. Health Qual Life Outcomes 2015 ; 13 : 159. [CrossRef] [PubMed] [Google Scholar]
  9. Elbasiouny SM, Moroz D, Bakr MM, Mushahwar VK. Management of spasticity after spinal cord injury: current techniques and future directions. Neurorehabil Neural Repair 2010 ; 24 : 23–33. [CrossRef] [PubMed] [Google Scholar]
  10. Eccles JC, Kostyuk PG, Schmidt RF. Presynaptic inhibition of the central actions of flexor reflex afferents. J Physiol 1962 ; 161 : 258–281. [CrossRef] [PubMed] [Google Scholar]
  11. Hultborn H, Jankowska E, Lindstrom S, Roberts W. Neuronal pathway of the recurrent facilitation of motoneurones. J Physiol 1971 ; 218 : 495–514. [CrossRef] [PubMed] [Google Scholar]
  12. Crone C, Nielsen J, Petersen N, et al. Disynaptic reciprocal inhibition of ankle extensors in spastic patients. Brain 1994 ; 117 : 1161–1168. [CrossRef] [PubMed] [Google Scholar]
  13. Lundberg A, Voorhoeve P. Effects from the pyramidal tract on spinal reflex arcs. Acta Physiol Scand 1962 ; 56 : 201–219. [CrossRef] [PubMed] [Google Scholar]
  14. Nielsen J, Petersen N, Ballegaard M, et al. H-reflexes are less depressed following muscle stretch in spastic spinal cord injured patients than in healthy subjects. Exp Brain Res 1993 ; 97 : 173–176. [CrossRef] [PubMed] [Google Scholar]
  15. Thompson FJ, Reier PJ, Lucas CC, Parmer R. Altered patterns of reflex excitability subsequent to contusion injury of the rat spinal cord. J Neurophysiol 1992 ; 68 : 1473–1486. [PubMed] [Google Scholar]
  16. Crone C, Johnsen LL, Biering-Sorensen F, Nielsen JB. Appearance of reciprocal facilitation of ankle extensors from ankle flexors in patients with stroke or spinal cord injury. Brain 2003 ; 126 : 495–507. [CrossRef] [PubMed] [Google Scholar]
  17. Jean-Xavier C, Mentis GZ, O’Donovan MJ, et al. Dual personality of GABA/glycine-mediated depolarizations in immature spinal cord. Proc Natl Acad Sci USA 2007 ; 104 : 11477–11482. [CrossRef] [Google Scholar]
  18. Boulenguez P, Liabeuf S, Bos R, et al. Down-regulation of the potassium-chloride cotransporter KCC2 contributes to spasticity after spinal cord injury. Nat Med 2010 ; 16 : 302–307. [CrossRef] [PubMed] [Google Scholar]
  19. Boulenguez P, Liabeuf S, Vinay L. Perte d’inhibition neuronale et spasticité après traumatisme de la moelle épinière. Med Sci (Paris) 2011 ; 27 : 7–9. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  20. Bos R, Sadlaoud K, Boulenguez P, et al. Activation of 5-HT2A receptors upregulates the function of the neuronal K-Cl cotransporter KCC2. Proc Natl Acad Sci USA 2013 ; 110 : 348–353. [CrossRef] [Google Scholar]
  21. Jean-Xavier C, Pflieger JF, Liabeuf S, Vinay L. Inhibitory postsynaptic potentials in lumbar motoneurons remain depolarizing after neonatal spinal cord transection in the rat. J Neurophysiol 2006 ; 96 : 2274–2281. [CrossRef] [PubMed] [Google Scholar]
  22. Bouhadfane M, Tazerart S, Moqrich A, et al. Sodium-mediated plateau potentials in lumbar motoneurons of neonatal rats. J Neurosci 2013 ; 33 : 15626–15641. [CrossRef] [PubMed] [Google Scholar]
  23. Brocard F, Shevtsova NA, Bouhadfane M, et al. Activity-dependent changes in extracellular Ca2+ and K+ reveal pacemakers in the spinal locomotor-related network. Neuron 2013 ; 77 : 1047–1054. [CrossRef] [PubMed] [Google Scholar]
  24. Brocard F, Tazerart S, Vinay L. Do pacemakers drive the central pattern generator for locomotion in mammals ?. Neuroscientist 2010 ; 16 : 139–155. [CrossRef] [PubMed] [Google Scholar]
  25. Tazerart S, Vinay L, Brocard F. The persistent sodium current generates pacemaker activities in the central pattern generator for locomotion and regulates the locomotor rhythm. J Neurosci 2008 ; 28 : 8577–8589. [CrossRef] [PubMed] [Google Scholar]
  26. Tazerart S, Viemari JC, Darbon P, et al. Contribution of persistent sodium current to locomotor pattern generation in neonatal rats. J Neurophysiol 2007 ; 98 : 613–628. [CrossRef] [PubMed] [Google Scholar]
  27. Brocard C, Plantier V, Boulenguez P, et al. Cleavage of Na(+) channels by calpain increases persistent Na+ current and promotes spasticity after spinal cord injury. Nat Med 2016 ; 22 : 404–411. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  28. Gorassini MA, Knash ME, Harvey PJ, et al. Role of motoneurons in the generation of muscle spasms after spinal cord injury. Brain 2004 ; 127 : 2247–2258. [CrossRef] [PubMed] [Google Scholar]
  29. Guroff G. A neutral, calcium-activated proteinase from the soluble fraction of rat brain. J Biol Chem 1964 ; 239 : 149–155. [PubMed] [Google Scholar]
  30. Goll DE, Thompson VF, Li H, et al. The calpain system. Physiol Rev 2003 ; 83 : 731–801. [CrossRef] [PubMed] [Google Scholar]
  31. Shumway SD, Maki M, Miyamoto S. The PEST domain of IkappaBalpha is necessary and sufficient for in vitro degradation by mu-calpain. J Biol Chem 1999 ; 274 : 30874–30881. [CrossRef] [PubMed] [Google Scholar]
  32. Baudry M, Bi X. Calpain-1 and calpain 2: The Yin and Yang of synaptic plasticity and neurodegeneration. Trends Neurosci 2016 ; 39 : 235–245. [CrossRef] [PubMed] [Google Scholar]
  33. Banik NL, Matzelle DC, Gantt-Wilford G, et al. Increased calpain content and progressive degradation of neurofilament protein in spinal cord injury. Brain Res 1997 ; 752 : 301–306. [CrossRef] [PubMed] [Google Scholar]
  34. Du S, Rubin A, Klepper S, et al. Calcium influx and activation of calpain I mediate acute reactive gliosis in injured spinal cord. Exp Neurol 1999 ; 157 : 96–105. [CrossRef] [PubMed] [Google Scholar]
  35. Arataki S, Tomizawa K, Moriwaki A, et al. Calpain inhibitors prevent neuronal cell death and ameliorate motor disturbances after compression-induced spinal cord injury in rats. J Neurotrauma 2005 ; 22 : 398–406. [CrossRef] [PubMed] [Google Scholar]
  36. Iwata A, Stys PK, Wolf JA, et al. Traumatic axonal injury induces proteolytic cleavage of the voltage-gated sodium channels modulated by tetrodotoxin and protease inhibitors. J Neurosci 2004 ; 24 : 4605–4613. [CrossRef] [PubMed] [Google Scholar]
  37. Armstrong CM, Bezanilla F, Rojas E. Destruction of sodium conductance inactivation in squid axons perfused with pronase. J Gen Physiol 1973 ; 62 : 375–391. [CrossRef] [PubMed] [Google Scholar]
  38. Puskarjov M, Ahmad F, Kaila K, Blaesse P. Activity-dependent cleavage of the K-Cl cotransporter KCC2 mediated by calcium-activated protease calpain. J Neurosci 2012 ; 32 : 11356–11364. [CrossRef] [PubMed] [Google Scholar]
  39. Zhou HY, Chen SR, Byun HS, et al. N-methyl-D-aspartate receptor- and calpain-mediated proteolytic cleavage of K+-Cl- cotransporter-2 impairs spinal chloride homeostasis in neuropathic pain. J Biol Chem 2012 ; 287 : 33853–33864. [CrossRef] [PubMed] [Google Scholar]
  40. Mercado A, Broumand V, Zandi-Nejad K, et al. A C-terminal domain in KCC2 confers constitutive K+-Cl- cotransport. J Biol Chem 2006 ; 281 : 1016–1026. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.