Free Access
Issue
Med Sci (Paris)
Volume 33, Number 6-7, Juin-Juillet 2017
Page(s) 637 - 641
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20173306021
Published online 19 July 2017
  1. Colombani J, Arquier N, Leopold P. Les mouches gardent la ligne : slimfast, le corps gras et le contrôle humoral de la croissance. Med Sci (Paris) 2004 ; 20 : 141–143. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  2. Colombani J, Bianchini L, Layalle S, et al. Stéroïdes, insuline et croissance : les mouches dopent la recherche. Med Sci (Paris) 2006 ; 22 : 241–243. [CrossRef] [EDP Sciences] [Google Scholar]
  3. Colombani J, Andersen DS, Leopold P. Atteindre la bonne taille…. Med Sci (Paris) 2012 ; 28 : 918–919. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  4. Andersen DS, Colombani J, Leopold P. Coordination of organ growth: principles and outstanding questions from the world of insects. Trends Cell Biol 2013 ; 23 : 336–344. [CrossRef] [PubMed] [Google Scholar]
  5. Hariharan IK, Bilder D. Regulation of imaginal disc growth by tumor-suppressor genes in Drosophila. Annu Rev Genet 2006 ; 40 : 335–361. [CrossRef] [PubMed] [Google Scholar]
  6. Nassel DR, Vanden Broeck J. Insulin/IGF signaling in Drosophila and other insects: factors that regulate production, release and post-release action of the insulin-like peptides. Cell Mol Life Sci 2016 ; 73 : 271–290. [CrossRef] [PubMed] [Google Scholar]
  7. Harrison RG. Some unexpected results of the heteroplastic transplantation of limbs. Proc Natl Acad Sci USA 1924 ; 10 : 69–74. [CrossRef] [Google Scholar]
  8. Twitty VC, Schwind JL. The growth of eyes and limbs transplanted heteroplastically between two specis of Amblistoma. J Exp Zool 1931 ; 59 : 61–86. [CrossRef] [Google Scholar]
  9. Bryant PJ, Simpson P. Intrinsic and extrinsic control of growth in developing organs. Q Rev Biol 1984 ; 59 : 387–415. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  10. Bryant PJ, Levinson P. Intrinsic growth control in the imaginal primordia of Drosophila, and the autonomous action of a lethal mutation causing overgrowth. Dev Biol 1985 ; 107 : 355–363. [CrossRef] [PubMed] [Google Scholar]
  11. Hariharan IK, Serras F. Imaginal disc regeneration takes flight. Curr Opin Cell Biol 2017 ; 48 : 10–16. [CrossRef] [PubMed] [Google Scholar]
  12. Stern DL, Emlen DJ. The developmental basis for allometry in insects. Development 1999 ; 126 : 1091–1101. [PubMed] [Google Scholar]
  13. Simpson P, Berreur P, Berreur-Bonnenfant J. The initiation of pupariation in Drosophila: dependence on growth of the imaginal discs. J Embryol Exp Morphol 1980 ; 57 : 155–165. [PubMed] [Google Scholar]
  14. Poodry CA, Woods DF. Control of the developmental timer for Drosophila pupariation. Roux’s Archives of Developmental Biology 1990 ; 199 : 219–227. [CrossRef] [Google Scholar]
  15. Stieper BC, Kupershtok M, Driscoll MV, et al. Imaginal discs regulate developmental timing in Drosophila melanogaster. Dev Biol 2008 ; 321 : 18–26. [CrossRef] [PubMed] [Google Scholar]
  16. Smith-Bolton RK, Worley MI, Kanda H, et al. Regenerative growth in Drosophila imaginal discs is regulated by Wingless and Myc. Dev Cell 2009 ; 16 : 797–809. [CrossRef] [PubMed] [Google Scholar]
  17. Hariharan IK. How growth abnormalities delay “puberty” in Drosophila. Sci Signal 2012; 5 : pe27. [CrossRef] [PubMed] [Google Scholar]
  18. Colombani J, Andersen DS, Leopold P. Secreted peptide Dilp8 coordinates Drosophila tissue growth with developmental timing. Science 2012 ; 336 : 582–585. [CrossRef] [PubMed] [Google Scholar]
  19. Garelli A, Gontijo AM, Miguela V, et al. Imaginal discs secrete insulin-like peptide 8 to mediate plasticity of growth and maturation. Science 2012 ; 336 : 579–582. [CrossRef] [PubMed] [Google Scholar]
  20. Colombani J, Andersen DS, Boulan L, et al. Drosophila Lgr3 couples organ growth with maturation and ensures developmental stability. Curr Biol 2015 ; 25 : 2723–2729. [CrossRef] [PubMed] [Google Scholar]
  21. Garelli A, Heredia F, Casimiro AP, et al. Dilp8 requires the neuronal relaxin receptor Lgr3 to couple growth to developmental timing. Nat Commun 2015 ; 6 : 8732. [CrossRef] [PubMed] [Google Scholar]
  22. Vallejo DM, Juarez-Correno S, Bolivar J, et al. A brain circuit that synchronizes growth and maturation revealed through Dilp8 binding to Lgr3. Science 2015; 350 : aac6767. [CrossRef] [PubMed] [Google Scholar]
  23. Jaszczak JS, Wolpe JB, Bhandari R, et al. Growth coordination during Drosophila melanogaster imaginal disc regeneration is mediated by signaling through the relaxin receptor Lgr3 in the prothoracic gland. Genetics 2016 ; 204 : 703–709. [CrossRef] [PubMed] [Google Scholar]
  24. Jaszczak JS, Halme A. Arrested development: coordinating regeneration with development and growth in Drosophila melanogaster. Curr Opin Genet Dev 2016 ; 40 : 87–94. [CrossRef] [PubMed] [Google Scholar]
  25. Parker NF, Shingleton AW. The coordination of growth among Drosophila organs in response to localized growth-perturbation. Dev Biol 2011 ; 357 : 318–325. [CrossRef] [PubMed] [Google Scholar]
  26. Herboso L, Oliveira MM, Talamillo A, et al. Ecdysone promotes growth of imaginal discs through the regulation of Thor in D. melanogaster. Sci Rep 2015; 5 : 12383. [CrossRef] [PubMed] [Google Scholar]
  27. Gokhale RH, Hayashi T, Mirque CD, et al. Intra-organ growth coordination in Drosophila is mediated by systemic ecdysone signaling. Dev Biol 2016 ; 418 : 135–145. [CrossRef] [PubMed] [Google Scholar]
  28. Jaszczak JS, Wolpe JB, Dao AQ, et al. Nitric oxide synthase regulates growth coordination during Drosophila melanogaster imaginal disc regeneration. Genetics 2015 ; 200 : 1219–1228. [CrossRef] [PubMed] [Google Scholar]
  29. Debat V. Symmetry is beauty - or is it ? Grandeur et décadence de l’asymétrie fluctuante. Med Sci (Paris) 2016 ; 32 : 774–780. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  30. Debat V, Peronnet F. Asymmetric flies: The control of developmental noise in Drosophila. Fly 2013 ; 7 : 70–77. [CrossRef] [PubMed] [Google Scholar]
  31. Boone E, Colombani J, Andersen DS, et al. The Hippo signalling pathway coordinates organ growth and limits developmental variability by controlling dilp8 expression. Nat Commun 2016 ; 7 : 13505. [CrossRef] [PubMed] [Google Scholar]
  32. Bardet PL. La voie Hippo contrôle la croissance des organes au cours du développement. Med Sci (Paris) 2009 ; 25 : 253–257. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  33. Yu FX, Zhao B, Guan KL. Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell 2015 ; 163 : 811–828. [CrossRef] [PubMed] [Google Scholar]
  34. Gilgenkrantz H. La révolution des CRISPR est en marche. Med Sci (Paris) 2014 ; 30 : 1066–1069. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  35. Baena-Lopez LA, Alexandre C, Mitchell A, et al. Accelerated homologous recombination and subsequent genome modification in Drosophila. Development 2013 ; 140 : 4818–4825. [CrossRef] [PubMed] [Google Scholar]
  36. Roselló-Díez A, Joyner AL. Regulation of long bone growth in vertebrates; It is time to catch up. Endocr Rev 2015 ; 36 : 646–680. [CrossRef] [PubMed] [Google Scholar]
  37. McGowan BM, Stanley SA, Donovan J, et al. Relaxin-3 stimulates the hypothalamic-pituitary-gonadal axis. Am J Physiol Endocrinol Metab 2008 ; 295 : E278–E286. [CrossRef] [PubMed] [Google Scholar]
  38. McGowan BM, Minnion JS, Murphy KG, et al. Relaxin-3 stimulates the neuro-endocrine stress axis via corticotrophin-releasing hormone. J Endocrinol 2014 ; 221 : 337–346. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.