Accès gratuit
Numéro
Med Sci (Paris)
Volume 33, Numéro 6-7, Juin-Juillet 2017
Page(s) 620 - 628
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20173306019
Publié en ligne 19 juillet 2017
  1. Fletcher JM, Lalor SJ, Sweeney CM, et al. T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin Exp Immunol 2010 ; 162 : 1–11. [Google Scholar]
  2. Zozulya AL, Wiendl H. The role of regulatory T cells in multiple sclerosis. Nat Clin Pract Neurol 2008 ; 4 : 384–398. [CrossRef] [PubMed] [Google Scholar]
  3. Disanto G, Morahan JM, Barnett MH, et al. The evidence for a role of B cells in multiple sclerosis. Neurology 2012 ; 78 : 823–832. [Google Scholar]
  4. Winter J, Jung S, Keller S, et al. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 2009 ; 11 : 228–234. [CrossRef] [PubMed] [Google Scholar]
  5. Hartmann C, Corre-Menguy F, Boualem A, et al. Les microARN: Une nouvelle classe de régulateurs de l’expression génique. Med Sci (Paris) 2004 ; 20 : 894–898. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  6. Hinault C, Dumortier O, Van Obberghen E. MicroARN et diabète : petites structures - grands effets. Med Sci (Paris) 2013 ; 29 : 785–790. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  7. McManus DD, Freedman JE. MicroRNAs in platelet function and cardiovascular disease. Nat Rev Cardiol 2015 ; 12 : 711–717. [Google Scholar]
  8. Lin S, Gregory RI. MicroRNA biogenesis pathways in cancer. Nat Rev Cancer 2015 ; 15 : 321–333. [Google Scholar]
  9. Li Y, Du C, Wang W, et al. Genetic association of MiR-146a with multiple sclerosis susceptibility in the Chinese population. Cell Physiol Biochem 2015 ; 35 : 281–291. [CrossRef] [PubMed] [Google Scholar]
  10. Kiselev I, Bashinskaya V, Kulakova O, et al. Variants of MicroRNA genes: gender-specific associations with multiple sclerosis risk and severity. Int J Mol Sci 2015 ; 16 : 20067–20081. [Google Scholar]
  11. Du C, Liu C, Kang J, et al. MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat Immunol 2009 ; 10 : 1252–1259. [CrossRef] [PubMed] [Google Scholar]
  12. Zhang J, Cheng Y, Cui W, et al. MicroRNA-155 modulates Th1 and Th17 cell differentiation and is associated with multiple sclerosis and experimental autoimmune encephalomyelitis. J Neuroimmunol 2014 ; 266 : 56–63. [CrossRef] [PubMed] [Google Scholar]
  13. Keller A, Leidinger P, Steinmeyer F, et al. Comprehensive analysis of microRNA profiles in multiple sclerosis including next-generation sequencing. Mult Scler Houndmills Basingstoke Engl 2014 ; 20 : 295–303. [CrossRef] [Google Scholar]
  14. Cox MB, Cairns MJ, Gandhi KS, et al. MicroRNAs miR-17 and miR-20a inhibit T cell activation genes and are under-expressed in MS whole blood. PLoS One 2010 ; 5 : e12132. [CrossRef] [PubMed] [Google Scholar]
  15. Junker A, Krumbholz M, Eisele S, et al. MicroRNA profiling of multiple sclerosis lesions identifies modulators of the regulatory protein CD47. Brain J Neurol 2009 ; 132 : 3342–3352. [CrossRef] [Google Scholar]
  16. Noorbakhsh F, Ellestad KK, Maingat F, et al. Impaired neurosteroid synthesis in multiple sclerosis. Brain J Neurol 2011 ; 134 : 2703–2721. [CrossRef] [Google Scholar]
  17. Dutta R, Chomyk AM, Chang A, et al. Hippocampal demyelination and memory dysfunction are associated with increased levels of the neuronal microRNA miR-124 and reduced AMPA receptors. Ann Neurol 2013 ; 73 : 637–645. [CrossRef] [PubMed] [Google Scholar]
  18. Søndergaard HB, Hesse D, Krakauer M, et al. Differential microRNA expression in blood in multiple sclerosis. Mult Scler Houndmills Basingstoke Engl 2013 ; 19 : 1849–1857. [CrossRef] [Google Scholar]
  19. Otaegui D, Baranzini SE, Armañanzas R, et al. Differential micro RNA expression in PBMC from multiple sclerosis patients. PLoS One 2009 ; 4 : e6309. [CrossRef] [PubMed] [Google Scholar]
  20. Lorenzi JCC, Brum DG, Zanette DL, et al. miR-15a and 16–1 are downregulated in CD4+ T cells of multiple sclerosis relapsing patients. Int J Neurosci 2012 ; 122 : 466–471. [Google Scholar]
  21. Sievers C, Meira M, Hoffmann F, et al. Altered microRNA expression in B lymphocytes in multiple sclerosis: towards a better understanding of treatment effects. Clin Immunol Orlando Fla 2012 ; 144 : 70–79. [CrossRef] [Google Scholar]
  22. Miyazaki Y, Li R, Rezk A, et al. A Novel MicroRNA-132-surtuin-1 axis underlies aberrant b-cell cytokine regulation in patients with relapsing-remitting multiple sclerosis. PLoS One 2014 ; 9 : e105421. [CrossRef] [PubMed] [Google Scholar]
  23. Lindberg RLP, Hoffmann F, Mehling M, et al. Altered expression of miR-17-5p in CD4+ lymphocytes of relapsing-remitting multiple sclerosis patients. Eur J Immunol 2010 ; 40 : 888–898. [CrossRef] [PubMed] [Google Scholar]
  24. Jernås M, Malmeström C, Axelsson M, et al. MicroRNA regulate immune pathways in T-cells in multiple sclerosis (MS). BMC Immunol 2013 ; 14 : 32. [CrossRef] [PubMed] [Google Scholar]
  25. Guerau-de-Arellano M, Smith KM, Godlewski J, et al. Micro-RNA dysregulation in multiple sclerosis favours pro-inflammatory T-cell-mediated autoimmunity. Brain J Neurol 2011 ; 134 : 3578–3589. [CrossRef] [Google Scholar]
  26. De Santis G, Ferracin M, Biondani A, et al. Altered miRNA expression in T regulatory cells in course of multiple sclerosis. J Neuroimmunol 2010 ; 226 : 165–171. [CrossRef] [PubMed] [Google Scholar]
  27. Moore CS, Rao VTS, Durafourt BA, et al. miR-155 as a multiple sclerosis-relevant regulator of myeloid cell polarization. Ann Neurol 2013 ; 74 : 709–720. [CrossRef] [PubMed] [Google Scholar]
  28. Reijerkerk A, Lopez-Ramirez MA, van Het Hof B, et al. MicroRNAs regulate human brain endothelial cell-barrier function in inflammation: implications for multiple sclerosis. J Neurosci 2013 ; 33 : 6857–6863. [CrossRef] [PubMed] [Google Scholar]
  29. Lopez-Ramirez MA, Wu D, Pryce G, et al. MicroRNA-155 negatively affects blood-brain barrier function during neuroinflammation. FASEB J 2014 ; 28 : 2551–2565. [CrossRef] [PubMed] [Google Scholar]
  30. Gandhi R, Healy B, Gholipour T, et al. Circulating microRNAs as biomarkers for disease staging in multiple sclerosis. Ann Neurol 2013 ; 73 : 729–740. [CrossRef] [PubMed] [Google Scholar]
  31. Siegel SR, Mackenzie J, Chaplin G, et al. Circulating microRNAs involved in multiple sclerosis. Mol Biol Rep 2012 ; 39 : 6219–6225. [CrossRef] [PubMed] [Google Scholar]
  32. Fenoglio C, Ridolfi E, Cantoni C, et al. Decreased circulating miRNA levels in patients with primary progressive multiple sclerosis. Mult Scler Houndmills Basingstoke Engl 2013 ; 19 : 1938–1942. [CrossRef] [Google Scholar]
  33. Mancuso R, Hernis A, Agostini S, et al. MicroRNA-572 expression in multiple sclerosis patients with different patterns of clinical progression. J Transl Med 2015 ; 13 : 148. [CrossRef] [PubMed] [Google Scholar]
  34. Haghikia A, Haghikia A, Hellwig K, et al. Regulated microRNAs in the CSF of patients with multiple sclerosis: a case-control study. Neurology 2012 ; 79 : 2166–2170. [Google Scholar]
  35. Jagot F, Davoust N. Is it worth considering circulating microRNAs in multiple sclerosis ?. Front Immunol 2016 ; 7 : 129. [CrossRef] [PubMed] [Google Scholar]
  36. Murugaiyan G, da Cunha AP, Ajay AK, et al. MicroRNA-21 promotes Th17 differentiation and mediates experimental autoimmune encephalomyelitis. J Clin Invest 2015 ; 125 : 1069–1080. [CrossRef] [PubMed] [Google Scholar]
  37. O’Connell RM, Kahn D, Gibson WSJ, et al. MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity 2010 ; 33 : 607–619. [CrossRef] [PubMed] [Google Scholar]
  38. El-behi M, Rostami A, Ciric B. Current views on the roles of Th1 and Th17 cells in experimental autoimmune encephalomyelitis. J Neuroimmune Pharmacol 2010 ; 5 : 189–197. [Google Scholar]
  39. Mycko MP, Cichalewska M, Machlanska A, et al. MicroRNA-301a regulation of a T-helper 17 immune response controls autoimmune demyelination. Proc Natl Acad Sci USA 2012 ; 109 : E1248–E1257. [CrossRef] [Google Scholar]
  40. Bettelli E, Sullivan B, Szabo SJ, et al. Loss of T-bet, but not STAT1, prevents the development of experimental autoimmune encephalomyelitis. J Exp Med 2004 ; 200 : 79–87. [CrossRef] [PubMed] [Google Scholar]
  41. Ivanov II, McKenzie BS, Zhou L, et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 2006 ; 126 : 1121–1133. [CrossRef] [PubMed] [Google Scholar]
  42. Haak S, Croxford AL, Kreymborg K, et al. IL-17A and IL-17F do not contribute vitally to autoimmune neuro-inflammation in mice. J Clin Invest 2009 ; 119 : 61–69. [PubMed] [Google Scholar]
  43. Ferber IA, Brocke S, Taylor-Edwards C, et al. Mice with a disrupted IFN-gamma gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE). J Immunol 1996 ; 156 : 5–7. [PubMed] [Google Scholar]
  44. Matusevicius D, Kivisäkk P, He B, et al. Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis. Mult Scler Houndmills Basingstoke Engl 1999 ; 5 : 101–104. [CrossRef] [EDP Sciences] [Google Scholar]
  45. Tzartos JS, Friese MA, Craner MJ, et al. Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am J Pathol 2008 ; 172 : 146–155. [CrossRef] [PubMed] [Google Scholar]
  46. Ponomarev ED, Veremeyko T, Barteneva N, et al. MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-α-PU.1 pathway. Nat Med 2011 ; 17 : 64–70. [CrossRef] [PubMed] [Google Scholar]
  47. Goldmann T, Prinz M. Role of microglia in CNS autoimmunity. J Immunol Res 2013 ; 2013 : e208093. [Google Scholar]
  48. Weber JA, Baxter DH, Zhang S, et al. The microRNA spectrum in 12 body fluids. Clin Chem 2010 ; 56 : 1733–1741. [CrossRef] [PubMed] [Google Scholar]
  49. Baulande S, Criqui A, Duthieuw M. Les microARN circulants, une nouvelle classe de biomarqueurs pour la médecine. Med Sci (Paris) 2014 ; 30 : 289–296. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  50. Okoye IS, Coomes SM, Pelly VS, et al. MicroRNA-containing T-regulatory-cell-derived exosomes suppress pathogenic T helper 1 cells. Immunity 2014 ; 41 : 89–103. [CrossRef] [PubMed] [Google Scholar]
  51. Walker JD, Maier CL, Pober JS. Cytomegalovirus-infected human endothelial cells can stimulate allogeneic CD4+ memory T cells by releasing antigenic exosomes. J Immunol 2009 ; 182 : 1548–1559. [CrossRef] [PubMed] [Google Scholar]
  52. Ridder K, Keller S, Dams M, et al. Extracellular vesicle-mediated transfer of genetic information between the hematopoietic system and the brain in response to inflammation. PLoS Biol 2014 ; 12 : e1001874. [CrossRef] [PubMed] [Google Scholar]
  53. Hoy AM, Buck AH. Extracellular small RNAs: what, where, why ?. Biochem Soc Trans 2012 ; 40 : 886–890. [CrossRef] [PubMed] [Google Scholar]
  54. Waschbisch A, Atiya M, Linker RA, et al. Glatiramer acetate treatment normalizes deregulated microRNA expression in relapsing remitting multiple sclerosis. PLoS One 2011 ; 6 : e24604. [CrossRef] [PubMed] [Google Scholar]
  55. Meira M, Sievers C, Hoffmann F, et al. MiR-126: a novel route for natalizumab action ?. Mult Scler Houndmills Basingstoke Engl 2014 ; 20 : 1363–1370. [CrossRef] [Google Scholar]
  56. Meira M, Sievers C, Hoffmann F, et al. Unraveling natalizumab effects on deregulated miR-17 expression in CD4+ T cells of patients with relapsing-remitting multiple sclerosis. J Immunol Res 2014 ; 2014 : 897249. [CrossRef] [PubMed] [Google Scholar]
  57. Sáenz-Cuesta M, Osorio-Querejeta I, Otaegui D. Extracellular vesicles in multiple sclerosis: What are they telling us ?. Front Cell Neurosci 2014 ; 8 : 100. [PubMed] [Google Scholar]
  58. Pinet F. BautersC. Potentiel des ARN non codants comme biomarqueurs dans l’insuffisance cardiaque. Med Sci (Paris) 2015 ; 31 : 770–776. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.