Free Access
Issue
Med Sci (Paris)
Volume 33, Number 6-7, Juin-Juillet 2017
Page(s) 613 - 619
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20173306018
Published online 19 July 2017
  1. Warner JR. The economics of ribosome biosynthesis in yeast. Trends Biochem Sci 1999 ; 24 : 437–440. [CrossRef] [PubMed] [Google Scholar]
  2. Henras AK, Soudet J, Gérus M, et al. The post-transcriptional steps of eukaryotic ribosome biogenesis. Cell Mol Life Sci 2008 ; 65 : 2334–2359. [CrossRef] [PubMed] [Google Scholar]
  3. Henras AK, Plisson-Chastang C, O’Donohue M-F, et al. An overview of pre-ribosomal RNA processing in eukaryotes. Wiley Interdiscip Rev RNA 2015 ; 6 : 225–242. [CrossRef] [PubMed] [Google Scholar]
  4. Lebaron S, Schneider C, van Nues RW, et al. Proofreading of pre-40S ribosome maturation by a translation initiation factor and 60S subunits. Nat Struct Mol Biol 2012 ; 19 : 744–753. [CrossRef] [PubMed] [Google Scholar]
  5. Strunk BS, Novak MN, Young CL, et al. A translation-like cycle is a quality control checkpoint for maturing 40S ribosome subunits. Cell 2012 ; 150 : 111–121. [CrossRef] [PubMed] [Google Scholar]
  6. Wade C, Shea KA, Jensen RV, et al. EBP2 is a member of the yeast RRB regulon, a transcriptionally coregulated set of genes that are required for ribosome and rRNA biosynthesis. Mol Cell Biol 2001 ; 21 : 8638–8650. [CrossRef] [PubMed] [Google Scholar]
  7. Wade CH, Umbarger MA, McAlear MA. The budding yeast rRNA and ribosome biosynthesis (RRB) regulon contains over 200 genes. Yeast Chichester Engl 2006 ; 23 : 293–306. [CrossRef] [Google Scholar]
  8. Jorgensen P, Rupes I, Sharom JR, et al. A dynamic transcriptional network communicates growth potential to ribosome synthesis and critical cell size. Genes Dev 2004 ; 18 : 2491–2505. [CrossRef] [PubMed] [Google Scholar]
  9. Cai X, Gao L, Teng L, et al. Runx1 Deficiency Decreases Ribosome Biogenesis and Confers Stress Resistance to Hematopoietic Stem and Progenitor Cells. Cell Stem Cell 2015 ; 17 : 165–177. [CrossRef] [Google Scholar]
  10. Iadevaia V, Liu R, Proud CG. mTORC1 signaling controls multiple steps in ribosome biogenesis. Semin Cell Dev Biol 2014 ; 36 : 113–120. [CrossRef] [PubMed] [Google Scholar]
  11. van Riggelen J, Yetil A, Felsher DW. MYC as a regulator of ribosome biogenesis and protein synthesis. Nat Rev Cancer 2010 ; 10 : 301–309. [CrossRef] [PubMed] [Google Scholar]
  12. Montanaro L, Treré D, Derenzini M. Nucleolus, Ribosomes, and Cancer. Am J Pathol 2008 ; 173 : 301–310. [CrossRef] [PubMed] [Google Scholar]
  13. Lin M-L, Fukukawa C, Park J-H, et al. Involvement of G-patch domain containing 2 overexpression in breast carcinogenesis. Cancer Sci 2009 ; 100 : 1443–1450. [CrossRef] [PubMed] [Google Scholar]
  14. Bai D, Zhang J, Li T, et al. The ATPase hCINAP regulates 18S rRNA processing and is essential for embryogenesis and tumour growth. Nat Commun 2016 ; 7 : 12310. [CrossRef] [PubMed] [Google Scholar]
  15. Liu K, Chen H-L, Wang S, et al. High Expression of RIOK2 and NOB1 Predict Human Non-small Cell Lung Cancer Outcomes. Sci Rep 2016 ; 6 : 28666. [CrossRef] [PubMed] [Google Scholar]
  16. Ruggero D, Grisendi S, Piazza F, et al. Dyskeratosis congenita and cancer in mice deficient in ribosomal RNA modification. Science 2003 ; 299 : 259–262. [CrossRef] [PubMed] [Google Scholar]
  17. Pestov DG, Strezoska Z, Lau LF. Evidence of p53-dependent cross-talk between ribosome biogenesis and the cell cycle: effects of nucleolar protein Bop1 on G(1)/S transition. Mol Cell Biol 2001 ; 21 : 4246–4255. [CrossRef] [PubMed] [Google Scholar]
  18. Amsterdam A, Sadler KC, Lai K, et al. Many ribosomal protein genes are cancer genes in zebrafish. PLoS Biol 2004 ; 2 : E139. [CrossRef] [PubMed] [Google Scholar]
  19. Zhou X, Liao WJ, Liao JM, et al. Ribosomal proteins: functions beyond the ribosome. J Mol Cell Biol 2015 ; 7 : 92–104. [CrossRef] [PubMed] [Google Scholar]
  20. Yadavilli S, Mayo LD, Higgins M, et al. Ribosomal protein S3: A multi-functional protein that interacts with both p53 and MDM2 through its KH domain. DNA Repair 2009 ; 8 : 1215–1224. [CrossRef] [PubMed] [Google Scholar]
  21. Zhang X, Wang W, Wang H, et al. Identification of ribosomal protein S25 (RPS25)-MDM2-p53 regulatory feedback loop. Oncogene 2013 ; 32 : 2782–2791. [CrossRef] [PubMed] [Google Scholar]
  22. Marechal V, Elenbaas B, Piette J, et al. The ribosomal L5 protein is associated with mdm-2 and mdm-2-p53 complexes. Mol Cell Biol 1994 ; 14 : 7414–7420. [CrossRef] [PubMed] [Google Scholar]
  23. Zheng J, Lang Y, Zhang Q, et al. Structure of human MDM2 complexed with RPL11 reveals the molecular basis of p53 activation. Genes Dev 2015 ; 29 : 1524–1534. [CrossRef] [PubMed] [Google Scholar]
  24. Fumagalli S, Ivanenkov VV, Teng T, et al. Suprainduction of p53 by disruption of 40S and 60S ribosome biogenesis leads to the activation of a novel G2/M checkpoint. Genes Dev 2012 ; 26 : 1028–1040. [CrossRef] [PubMed] [Google Scholar]
  25. Lindström MS, Jin A, Deisenroth C, et al. Cancer-associated mutations in the MDM2 zinc finger domain disrupt ribosomal protein interaction and attenuate MDM2-induced p53 degradation. Mol Cell Biol 2007 ; 27 : 1056–1068. [CrossRef] [PubMed] [Google Scholar]
  26. Nicolas E, Parisot P, Pinto-Monteiro C, et al. Involvement of human ribosomal proteins in nucleolar structure and p53-dependent nucleolar stress. Nat Commun 2016 ; 7 : 11390. [CrossRef] [PubMed] [Google Scholar]
  27. Zhang J, Harnpicharnchai P, Jakovljevic J, et al. Assembly factors Rpf2 and Rrs1 recruit 5S rRNA and ribosomal proteins rpL5 and rpL11 into nascent ribosomes. Genes Dev 2007 ; 21 : 2580–2592. [CrossRef] [PubMed] [Google Scholar]
  28. Sloan KE, Bohnsack MT, Watkins NJ. The 5S RNP couples p53 homeostasis to ribosome biogenesis and nucleolar stress. Cell Rep 2013 ; 5 : 237–247. [CrossRef] [PubMed] [Google Scholar]
  29. Donati G, Peddigari S, Mercer CA, et al. 5S ribosomal RNA is an essential component of a nascent ribosomal precursor complex that regulates the Hdm2-p53 checkpoint. Cell Rep 2013 ; 4 : 87–98. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  30. Sherr CJ. The INK4a/ARF network in tumour suppression. Nat Rev Mol Cell Biol 2001 ; 2 : 731–737. [CrossRef] [PubMed] [Google Scholar]
  31. Weber JD, Kuo ML, Bothner B, et al. Cooperative signals governing ARF-mdm2 interaction and nucleolar localization of the complex. Mol Cell Biol 2000 ; 20 : 2517–2528. [CrossRef] [PubMed] [Google Scholar]
  32. Sugimoto M, Kuo M-L, Roussel MF, et al. Nucleolar Arf tumor suppressor inhibits ribosomal RNA processing. Mol Cell 2003 ; 11 : 415–424. [CrossRef] [PubMed] [Google Scholar]
  33. Ayrault O, Andrique L, Larsen CJ, et al. La régulation négative de la biogenèse des ribosomes. Med Sci (Paris) 2006 ; 22 : 519–524. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  34. Dai MS, Challagundla KB, Sun XX, et al. Physical and functional interaction between ribosomal protein L11 and the tumor suppressor ARF. J Biol Chem 2012 ; 287 : 17120–17129. [CrossRef] [PubMed] [Google Scholar]
  35. Fregoso OI, Das S, Akerman M, et al. Splicing-factor oncoprotein SRSF1 stabilizes p53 via RPL5 and induces cellular senescence. Mol Cell 2013 ; 50 : 56–66. [CrossRef] [PubMed] [Google Scholar]
  36. Havel JJ, Li Z, Cheng D, et al. Nuclear PRAS40 couples the Akt/mTORC1 signaling axis to the RPL11-HDM2-p53 nucleolar stress response pathway. Oncogene 2015 ; 34 : 1487–1498. [CrossRef] [PubMed] [Google Scholar]
  37. Narla A, Ebert BL. Ribosomopathies: human disorders of ribosome dysfunction. Blood 2010 ; 115 : 3196–3205. [CrossRef] [PubMed] [Google Scholar]
  38. Danilova N, Gazda HT. Ribosomopathies: how a common root can cause a tree of pathologies. Dis Model Mech 2015 ; 8 : 1013–1026. [CrossRef] [PubMed] [Google Scholar]
  39. Dutt S, Narla A, Lin K, et al. Haploinsufficiency for ribosomal protein genes causes selective activation of p53 in human erythroid progenitor cells. Blood 2011 ; 117 : 2567–2576. [CrossRef] [Google Scholar]
  40. Jones NC, Lynn ML, Gaudenz K, et al. Prevention of the neurocristopathy Treacher Collins syndrome through inhibition of p53 function. Nat Med 2008 ; 14 : 125–133. [CrossRef] [PubMed] [Google Scholar]
  41. Wu CL, Zukerberg LR, Ngwu C, et al. In vivo association of E2F and DP family proteins. Mol Cell Biol 1995 ; 15 : 2536–2546. [CrossRef] [PubMed] [Google Scholar]
  42. Grimm T, Hölzel M, Rohrmoser M, et al. Dominant-negative Pes1 mutants inhibit ribosomal RNA processing and cell proliferation via incorporation into the PeBoW-complex. Nucleic Acids Res 2006 ; 34 : 3030–3043. [CrossRef] [PubMed] [Google Scholar]
  43. Li J, Yu L, Zhang H, et al. Down-regulation of pescadillo inhibits proliferation and tumorigenicity of breast cancer cells. Cancer Sci 2009 ; 100 : 2255–2260. [CrossRef] [PubMed] [Google Scholar]
  44. Pfister AS, Keil M, Kühl M. The Wnt target protein Peter Pan defines a novel p53-independent nucleolar stress-response pathway. J Biol Chem 2015 ; 290 : 10905–10918. [CrossRef] [PubMed] [Google Scholar]
  45. Bernstein KA, Bleichert F, Bean JM, et al. Ribosome biogenesis is sensed at the Start cell cycle checkpoint. Mol. Biol. Cell 2007 ; 18 : 953–964. [CrossRef] [PubMed] [Google Scholar]
  46. Donati G, Brighenti E, Vici M, et al. Selective inhibition of rRNA transcription downregulates E2F–1: a new p53-independent mechanism linking cell growth to cell proliferation. J Cell Sci 2011 ; 124 : 3017–3028. [CrossRef] [PubMed] [Google Scholar]
  47. Dai M-S, Arnold H, Sun X-X, et al. Inhibition of c-Myc activity by ribosomal protein L11. EMBO J 2007 ; 26 : 3332–3345. [CrossRef] [PubMed] [Google Scholar]
  48. Pagliara V, Saide A, Mitidieri E, et al. 5-FU targets rpL3 to induce mitochondrial apoptosis via cystathionine-β-synthase in colon cancer cells lacking p53. Oncotarget Aug 2; 7(31):50333–50348. [Google Scholar]
  49. Alkhatabi HA, McLornan DP, Kulasekararaj AG, et al. RPL27A is a target of miR-595 and may contribute to the myelodysplastic phenotype through ribosomal dysgenesis. Oncotarget 2016 ; 7 : 47875–47890. [CrossRef] [PubMed] [Google Scholar]
  50. Teng T, Mercer CA, Hexley P, et al. Loss of tumor suppressor RPL5/RPL11 does not induce cell cycle arrest but impedes proliferation due to reduced ribosome content and translation capacity. Mol Cell Biol 2013 ; 33 : 4660–4671. [CrossRef] [PubMed] [Google Scholar]
  51. Devlin JR, Hannan KM, Hein N, et al. Combination therapy targeting ribosome biogenesis and mRNA translation synergistically extends survival in MYC-driven lymphoma. Cancer Discov 2016 ; 6 : 59–70. [CrossRef] [PubMed] [Google Scholar]
  52. Poortinga G, Quinn LM, Hannan RD. Targeting RNA polymerase I to treat MYC-driven cancer. Oncogene 2015 ; 34 : 403–412. [CrossRef] [PubMed] [Google Scholar]
  53. Leidig C, Thoms M, Holdermann I, et al. 60S ribosome biogenesis requires rotation of the 5S ribonucleoprotein particle. Nat Commun 2014 ; 5 : 3491. [CrossRef] [PubMed] [Google Scholar]
  54. Kornprobst M, Turk M, Kellner N, et al. Architecture of the 90S pre-ribosome: A structural view on the birth of the eukaryotic ribosome. Cell 2016 ; 166 : 380–393. [CrossRef] [PubMed] [Google Scholar]
  55. Loc’h J, Blaud M, Réty S, et al. RNA Mimicry by the Fap7 adenylate kinase in ribosome biogenesis. PLoS Biol 2014; 12 : e1001860. [CrossRef] [PubMed] [Google Scholar]
  56. Madru C, Lebaron S, Blaud M, et al. Chaperoning 5S RNA assembly. Genes Dev 2015 ; 29 : 1432–1446. [CrossRef] [PubMed] [Google Scholar]
  57. Albagli O. Protéger et sévir : p53, métabolisme et suppression tumorale. Med Sci (Paris) 2015 ; 31 : 869–880. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.