Accès gratuit
Numéro |
Med Sci (Paris)
Volume 33, Numéro 6-7, Juin-Juillet 2017
|
|
---|---|---|
Page(s) | 613 - 619 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/20173306018 | |
Publié en ligne | 19 juillet 2017 |
- Warner JR. The economics of ribosome biosynthesis in yeast. Trends Biochem Sci 1999 ; 24 : 437–440. [CrossRef] [PubMed] [Google Scholar]
- Henras AK, Soudet J, Gérus M, et al. The post-transcriptional steps of eukaryotic ribosome biogenesis. Cell Mol Life Sci 2008 ; 65 : 2334–2359. [CrossRef] [PubMed] [Google Scholar]
- Henras AK, Plisson-Chastang C, O’Donohue M-F, et al. An overview of pre-ribosomal RNA processing in eukaryotes. Wiley Interdiscip Rev RNA 2015 ; 6 : 225–242. [CrossRef] [PubMed] [Google Scholar]
- Lebaron S, Schneider C, van Nues RW, et al. Proofreading of pre-40S ribosome maturation by a translation initiation factor and 60S subunits. Nat Struct Mol Biol 2012 ; 19 : 744–753. [CrossRef] [PubMed] [Google Scholar]
- Strunk BS, Novak MN, Young CL, et al. A translation-like cycle is a quality control checkpoint for maturing 40S ribosome subunits. Cell 2012 ; 150 : 111–121. [CrossRef] [PubMed] [Google Scholar]
- Wade C, Shea KA, Jensen RV, et al. EBP2 is a member of the yeast RRB regulon, a transcriptionally coregulated set of genes that are required for ribosome and rRNA biosynthesis. Mol Cell Biol 2001 ; 21 : 8638–8650. [CrossRef] [PubMed] [Google Scholar]
- Wade CH, Umbarger MA, McAlear MA. The budding yeast rRNA and ribosome biosynthesis (RRB) regulon contains over 200 genes. Yeast Chichester Engl 2006 ; 23 : 293–306. [CrossRef] [Google Scholar]
- Jorgensen P, Rupes I, Sharom JR, et al. A dynamic transcriptional network communicates growth potential to ribosome synthesis and critical cell size. Genes Dev 2004 ; 18 : 2491–2505. [CrossRef] [PubMed] [Google Scholar]
- Cai X, Gao L, Teng L, et al. Runx1 Deficiency Decreases Ribosome Biogenesis and Confers Stress Resistance to Hematopoietic Stem and Progenitor Cells. Cell Stem Cell 2015 ; 17 : 165–177. [CrossRef] [Google Scholar]
- Iadevaia V, Liu R, Proud CG. mTORC1 signaling controls multiple steps in ribosome biogenesis. Semin Cell Dev Biol 2014 ; 36 : 113–120. [CrossRef] [PubMed] [Google Scholar]
- van Riggelen J, Yetil A, Felsher DW. MYC as a regulator of ribosome biogenesis and protein synthesis. Nat Rev Cancer 2010 ; 10 : 301–309. [CrossRef] [PubMed] [Google Scholar]
- Montanaro L, Treré D, Derenzini M. Nucleolus, Ribosomes, and Cancer. Am J Pathol 2008 ; 173 : 301–310. [CrossRef] [PubMed] [Google Scholar]
- Lin M-L, Fukukawa C, Park J-H, et al. Involvement of G-patch domain containing 2 overexpression in breast carcinogenesis. Cancer Sci 2009 ; 100 : 1443–1450. [CrossRef] [PubMed] [Google Scholar]
- Bai D, Zhang J, Li T, et al. The ATPase hCINAP regulates 18S rRNA processing and is essential for embryogenesis and tumour growth. Nat Commun 2016 ; 7 : 12310. [CrossRef] [PubMed] [Google Scholar]
- Liu K, Chen H-L, Wang S, et al. High Expression of RIOK2 and NOB1 Predict Human Non-small Cell Lung Cancer Outcomes. Sci Rep 2016 ; 6 : 28666. [CrossRef] [PubMed] [Google Scholar]
- Ruggero D, Grisendi S, Piazza F, et al. Dyskeratosis congenita and cancer in mice deficient in ribosomal RNA modification. Science 2003 ; 299 : 259–262. [CrossRef] [PubMed] [Google Scholar]
- Pestov DG, Strezoska Z, Lau LF. Evidence of p53-dependent cross-talk between ribosome biogenesis and the cell cycle: effects of nucleolar protein Bop1 on G(1)/S transition. Mol Cell Biol 2001 ; 21 : 4246–4255. [CrossRef] [PubMed] [Google Scholar]
- Amsterdam A, Sadler KC, Lai K, et al. Many ribosomal protein genes are cancer genes in zebrafish. PLoS Biol 2004 ; 2 : E139. [CrossRef] [PubMed] [Google Scholar]
- Zhou X, Liao WJ, Liao JM, et al. Ribosomal proteins: functions beyond the ribosome. J Mol Cell Biol 2015 ; 7 : 92–104. [CrossRef] [PubMed] [Google Scholar]
- Yadavilli S, Mayo LD, Higgins M, et al. Ribosomal protein S3: A multi-functional protein that interacts with both p53 and MDM2 through its KH domain. DNA Repair 2009 ; 8 : 1215–1224. [CrossRef] [PubMed] [Google Scholar]
- Zhang X, Wang W, Wang H, et al. Identification of ribosomal protein S25 (RPS25)-MDM2-p53 regulatory feedback loop. Oncogene 2013 ; 32 : 2782–2791. [CrossRef] [PubMed] [Google Scholar]
- Marechal V, Elenbaas B, Piette J, et al. The ribosomal L5 protein is associated with mdm-2 and mdm-2-p53 complexes. Mol Cell Biol 1994 ; 14 : 7414–7420. [CrossRef] [PubMed] [Google Scholar]
- Zheng J, Lang Y, Zhang Q, et al. Structure of human MDM2 complexed with RPL11 reveals the molecular basis of p53 activation. Genes Dev 2015 ; 29 : 1524–1534. [CrossRef] [PubMed] [Google Scholar]
- Fumagalli S, Ivanenkov VV, Teng T, et al. Suprainduction of p53 by disruption of 40S and 60S ribosome biogenesis leads to the activation of a novel G2/M checkpoint. Genes Dev 2012 ; 26 : 1028–1040. [CrossRef] [PubMed] [Google Scholar]
- Lindström MS, Jin A, Deisenroth C, et al. Cancer-associated mutations in the MDM2 zinc finger domain disrupt ribosomal protein interaction and attenuate MDM2-induced p53 degradation. Mol Cell Biol 2007 ; 27 : 1056–1068. [CrossRef] [PubMed] [Google Scholar]
- Nicolas E, Parisot P, Pinto-Monteiro C, et al. Involvement of human ribosomal proteins in nucleolar structure and p53-dependent nucleolar stress. Nat Commun 2016 ; 7 : 11390. [CrossRef] [PubMed] [Google Scholar]
- Zhang J, Harnpicharnchai P, Jakovljevic J, et al. Assembly factors Rpf2 and Rrs1 recruit 5S rRNA and ribosomal proteins rpL5 and rpL11 into nascent ribosomes. Genes Dev 2007 ; 21 : 2580–2592. [CrossRef] [PubMed] [Google Scholar]
- Sloan KE, Bohnsack MT, Watkins NJ. The 5S RNP couples p53 homeostasis to ribosome biogenesis and nucleolar stress. Cell Rep 2013 ; 5 : 237–247. [CrossRef] [PubMed] [Google Scholar]
- Donati G, Peddigari S, Mercer CA, et al. 5S ribosomal RNA is an essential component of a nascent ribosomal precursor complex that regulates the Hdm2-p53 checkpoint. Cell Rep 2013 ; 4 : 87–98. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Sherr CJ. The INK4a/ARF network in tumour suppression. Nat Rev Mol Cell Biol 2001 ; 2 : 731–737. [CrossRef] [PubMed] [Google Scholar]
- Weber JD, Kuo ML, Bothner B, et al. Cooperative signals governing ARF-mdm2 interaction and nucleolar localization of the complex. Mol Cell Biol 2000 ; 20 : 2517–2528. [CrossRef] [PubMed] [Google Scholar]
- Sugimoto M, Kuo M-L, Roussel MF, et al. Nucleolar Arf tumor suppressor inhibits ribosomal RNA processing. Mol Cell 2003 ; 11 : 415–424. [CrossRef] [PubMed] [Google Scholar]
- Ayrault O, Andrique L, Larsen CJ, et al. La régulation négative de la biogenèse des ribosomes. Med Sci (Paris) 2006 ; 22 : 519–524. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Dai MS, Challagundla KB, Sun XX, et al. Physical and functional interaction between ribosomal protein L11 and the tumor suppressor ARF. J Biol Chem 2012 ; 287 : 17120–17129. [CrossRef] [PubMed] [Google Scholar]
- Fregoso OI, Das S, Akerman M, et al. Splicing-factor oncoprotein SRSF1 stabilizes p53 via RPL5 and induces cellular senescence. Mol Cell 2013 ; 50 : 56–66. [CrossRef] [PubMed] [Google Scholar]
- Havel JJ, Li Z, Cheng D, et al. Nuclear PRAS40 couples the Akt/mTORC1 signaling axis to the RPL11-HDM2-p53 nucleolar stress response pathway. Oncogene 2015 ; 34 : 1487–1498. [CrossRef] [PubMed] [Google Scholar]
- Narla A, Ebert BL. Ribosomopathies: human disorders of ribosome dysfunction. Blood 2010 ; 115 : 3196–3205. [CrossRef] [PubMed] [Google Scholar]
- Danilova N, Gazda HT. Ribosomopathies: how a common root can cause a tree of pathologies. Dis Model Mech 2015 ; 8 : 1013–1026. [CrossRef] [PubMed] [Google Scholar]
- Dutt S, Narla A, Lin K, et al. Haploinsufficiency for ribosomal protein genes causes selective activation of p53 in human erythroid progenitor cells. Blood 2011 ; 117 : 2567–2576. [CrossRef] [Google Scholar]
- Jones NC, Lynn ML, Gaudenz K, et al. Prevention of the neurocristopathy Treacher Collins syndrome through inhibition of p53 function. Nat Med 2008 ; 14 : 125–133. [CrossRef] [PubMed] [Google Scholar]
- Wu CL, Zukerberg LR, Ngwu C, et al. In vivo association of E2F and DP family proteins. Mol Cell Biol 1995 ; 15 : 2536–2546. [CrossRef] [PubMed] [Google Scholar]
- Grimm T, Hölzel M, Rohrmoser M, et al. Dominant-negative Pes1 mutants inhibit ribosomal RNA processing and cell proliferation via incorporation into the PeBoW-complex. Nucleic Acids Res 2006 ; 34 : 3030–3043. [CrossRef] [PubMed] [Google Scholar]
- Li J, Yu L, Zhang H, et al. Down-regulation of pescadillo inhibits proliferation and tumorigenicity of breast cancer cells. Cancer Sci 2009 ; 100 : 2255–2260. [CrossRef] [PubMed] [Google Scholar]
- Pfister AS, Keil M, Kühl M. The Wnt target protein Peter Pan defines a novel p53-independent nucleolar stress-response pathway. J Biol Chem 2015 ; 290 : 10905–10918. [CrossRef] [PubMed] [Google Scholar]
- Bernstein KA, Bleichert F, Bean JM, et al. Ribosome biogenesis is sensed at the Start cell cycle checkpoint. Mol. Biol. Cell 2007 ; 18 : 953–964. [CrossRef] [PubMed] [Google Scholar]
- Donati G, Brighenti E, Vici M, et al. Selective inhibition of rRNA transcription downregulates E2F–1: a new p53-independent mechanism linking cell growth to cell proliferation. J Cell Sci 2011 ; 124 : 3017–3028. [CrossRef] [PubMed] [Google Scholar]
- Dai M-S, Arnold H, Sun X-X, et al. Inhibition of c-Myc activity by ribosomal protein L11. EMBO J 2007 ; 26 : 3332–3345. [CrossRef] [PubMed] [Google Scholar]
- Pagliara V, Saide A, Mitidieri E, et al. 5-FU targets rpL3 to induce mitochondrial apoptosis via cystathionine-β-synthase in colon cancer cells lacking p53. Oncotarget Aug 2; 7(31):50333–50348. [Google Scholar]
- Alkhatabi HA, McLornan DP, Kulasekararaj AG, et al. RPL27A is a target of miR-595 and may contribute to the myelodysplastic phenotype through ribosomal dysgenesis. Oncotarget 2016 ; 7 : 47875–47890. [CrossRef] [PubMed] [Google Scholar]
- Teng T, Mercer CA, Hexley P, et al. Loss of tumor suppressor RPL5/RPL11 does not induce cell cycle arrest but impedes proliferation due to reduced ribosome content and translation capacity. Mol Cell Biol 2013 ; 33 : 4660–4671. [CrossRef] [PubMed] [Google Scholar]
- Devlin JR, Hannan KM, Hein N, et al. Combination therapy targeting ribosome biogenesis and mRNA translation synergistically extends survival in MYC-driven lymphoma. Cancer Discov 2016 ; 6 : 59–70. [CrossRef] [PubMed] [Google Scholar]
- Poortinga G, Quinn LM, Hannan RD. Targeting RNA polymerase I to treat MYC-driven cancer. Oncogene 2015 ; 34 : 403–412. [CrossRef] [PubMed] [Google Scholar]
- Leidig C, Thoms M, Holdermann I, et al. 60S ribosome biogenesis requires rotation of the 5S ribonucleoprotein particle. Nat Commun 2014 ; 5 : 3491. [CrossRef] [PubMed] [Google Scholar]
- Kornprobst M, Turk M, Kellner N, et al. Architecture of the 90S pre-ribosome: A structural view on the birth of the eukaryotic ribosome. Cell 2016 ; 166 : 380–393. [CrossRef] [PubMed] [Google Scholar]
- Loc’h J, Blaud M, Réty S, et al. RNA Mimicry by the Fap7 adenylate kinase in ribosome biogenesis. PLoS Biol 2014; 12 : e1001860. [CrossRef] [PubMed] [Google Scholar]
- Madru C, Lebaron S, Blaud M, et al. Chaperoning 5S RNA assembly. Genes Dev 2015 ; 29 : 1432–1446. [CrossRef] [PubMed] [Google Scholar]
- Albagli O. Protéger et sévir : p53, métabolisme et suppression tumorale. Med Sci (Paris) 2015 ; 31 : 869–880. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.