Free Access
Issue
Med Sci (Paris)
Volume 33, Number 3, Mars 2017
Autophagie
Page(s) 275 - 282
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20173303014
Published online 03 April 2017
  1. Chawla LS, Eggers PW, Star RA, Kimmel PL. Acute kidney injury and chronic kidney disease as interconnected syndromes. N Engl J Med 2014 ; 371 : 58–66. [CrossRef] [PubMed] [Google Scholar]
  2. Inagi R, Ishimoto Y, Nangaku M. Proteostasis in endoplasmic reticulum: new mechanisms in kidney disease. Nat Rev Nephrol 2014 ; 10 : 369–378. [CrossRef] [PubMed] [Google Scholar]
  3. Ericsson JL. Studies on induced cellular autophagy. II. Characterization of the membranes bordering autophagosomes in parenchymal liver cells. Exp Cell Res 1969 ; 56 : 393–405. [CrossRef] [Google Scholar]
  4. Ericsson JL. Studies on induced cellular autophagy. I. Electron microscopy of cells with in vivo labelled lysosomes. Exp Cell Res 1969 ; 55 : 95–106. [CrossRef] [Google Scholar]
  5. Pfeifer U. Morphological aspects of intracellular protein-degradation: autophagy. Acta Biol Med Ger 1981 ; 40 : 1619–1624. [Google Scholar]
  6. Pfeifer U, Scheller H. A morphometric study of cellular autophagy including diurnal variations in kidney tubules of normal rats. J Cell Biol 1975 ; 64 : 608–621. [CrossRef] [PubMed] [Google Scholar]
  7. Berkenstam A, Ahlberg J, Glaumann H. Isolation and characterization of autophagic vacuoles from rat kidney cortex. Virchows Arch B Cell Pathol Incl Mol Pathol 1983 ; 44 : 275–286. [CrossRef] [PubMed] [Google Scholar]
  8. Schiebler TH, Danner KG. The effect of sex hormones on the proximal tubules in the rat kidney. Cell Tissue Res 1978 ; 192 : 527–549. [CrossRef] [PubMed] [Google Scholar]
  9. Pfeifer U, Warmuth-Metz M. Inhibition by insulin of cellular autophagy in proximal tubular cells of rat kidney. Am J Physiol 1983 ; 244 : E109–E114. [Google Scholar]
  10. Bahro M, Gertig G, Pfeifer U. Short-term stimulation of cellular autophagy by furosemide in the thick ascending limb of Henle’s loop in the rat kidney. Cell Tissue Res 1988 ; 253 : 625–629. [CrossRef] [PubMed] [Google Scholar]
  11. Hendil KB. Autophagy of metabolically inert substances injected into fibroblasts in culture. Exp Cell Res 1981 ; 135 : 157–166. [CrossRef] [Google Scholar]
  12. Shelburne JD, Arstila AU, Trump BF. Studies on cellular autophagocytosis. The relationship of autophagocytosis to protein synthesis and to energy metabolism in rat liver and flounder kidney tubules in vitro. Am J Pathol 1973 ; 73 : 641–670. [PubMed] [Google Scholar]
  13. Bijian K, Cybulsky AV. Stress proteins in glomerular epithelial cell injury. Contrib Nephrol 2005 ; 148 : 8–20. [CrossRef] [Google Scholar]
  14. Cybulsky AV. The intersecting roles of endoplasmic reticulum stress, ubiquitin- proteasome system, and autophagy in the pathogenesis of proteinuric kidney disease. Kidney Int 2013 ; 84 : 25–33. [CrossRef] [Google Scholar]
  15. Imasawa T, Rossignol R. Podocyte energy metabolism and glomerular diseases. Int J Biochem Cell Biol 2013 ; 45 : 2109–2118. [CrossRef] [PubMed] [Google Scholar]
  16. Hartleben B, Godel M, Meyer-Schwesinger C, et al. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J Clin Invest 2010 ; 120 : 1084–1096. [CrossRef] [Google Scholar]
  17. Bechtel W, Helmstadter M, Balica J, et al. Vps34 deficiency reveals the importance of endocytosis for podocyte homeostasis. J Am Soc Nephrol 2013 ; 24 : 727–743. [CrossRef] [Google Scholar]
  18. Bechtel W, Helmstadter M, Balica J, et al. The class III phosphatidylinositol 3-kinase PIK3C3/VPS34 regulates endocytosis and autophagosome-autolysosome formation in podocytes. Autophagy 2013 ; 9 : 1097–1099. [CrossRef] [PubMed] [Google Scholar]
  19. Mehta OH, Norheim G, Hoe JC, et al. Adjuvant effects elicited by novel oligosaccharide variants of detoxified meningococcal lipopolysaccharides on Neisseria meningitidis recombinant PorA protein: a comparison in mice. PLoS One 2014 ; 9 : e115713. [CrossRef] [Google Scholar]
  20. Kawakami T, Gomez IG, Ren S, et al. Deficient autophagy results in mitochondrial dysfunction and FSGS. J Am Soc Nephrol 2015 ; 26 : 1040–1052. [CrossRef] [Google Scholar]
  21. Weindel CG, Richey LJ, Bolland S, et al. B cell autophagy mediates TLR7-dependent autoimmunity and inflammation. Autophagy 2015 ; 11 : 1010–1024. [CrossRef] [PubMed] [Google Scholar]
  22. Inoki K, Mori H, Wang J, et al. mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. J Clin Invest 2011 ; 121 : 2181–2196. [CrossRef] [Google Scholar]
  23. Godel M, Hartleben B, Herbach N, et al. Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. J Clin Invest 2011 ; 121 : 2197–2209. [CrossRef] [Google Scholar]
  24. Ma T, Zhu J, Chen X, et al. High glucose induces autophagy in podocytes. Exp Cell Res 2013 ; 319 : 779–789. [CrossRef] [Google Scholar]
  25. Wu L, Feng Z, Cui S, et al. Rapamycin upregulates autophagy by inhibiting the mTOR-ULK1 pathway, resulting in reduced podocyte injury. PLoS One 2013 ; 8 : e63799. [CrossRef] [Google Scholar]
  26. Kitada M, Takeda A, Nagai T, et al. Dietary restriction ameliorates diabetic nephropathy through anti-inflammatory effects and regulation of the autophagy via restoration of Sirt1 in diabetic Wistar fatty (fa/fa) rats: a model of type 2 diabetes. Exp Diabetes Res 2011 ; 2011 : 908185. [CrossRef] [Google Scholar]
  27. Palsamy P, Subramanian S. Resveratrol protects diabetic kidney by attenuating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via Nrf2-Keap1 signaling. Biochim Biophys Acta 2011 ; 1812 : 719–731. [CrossRef] [Google Scholar]
  28. Sakaguchi M, Isono M, Isshiki K, et al. Inhibition of mTOR signaling with rapamycin attenuates renal hypertrophy in the early diabetic mice. Biochem Biophys Res Commun 2006 ; 340 : 296–301. [CrossRef] [PubMed] [Google Scholar]
  29. Tanaka Y, Kume S, Kitada M, et al. Autophagy as a therapeutic target in diabetic nephropathy. Exp Diabetes Res 2012 ; 2012 : 628978. [CrossRef] [Google Scholar]
  30. Zhang MZ, Wang Y, Paueksakon P, Harris RC. Epidermal growth factor receptor inhibition slows progression of diabetic nephropathy in association with a decrease in endoplasmic reticulum stress and an increase in autophagy. Diabetes 2014 ; 63 : 2063–2072. [CrossRef] [Google Scholar]
  31. Yadav A, Vallabu S, Arora S, et al. ANG II promotes autophagy in podocytes. Am J Physiol Cell Physiol 2010 ; 299 : C488–C496. [CrossRef] [PubMed] [Google Scholar]
  32. Dong C, Zheng H, Huang S, et al. Heme oxygenase-1 enhances autophagy in podocytes as a protective mechanism against high glucose-induced apoptosis. Exp Cell Res 2015 ; 337 : 146–159. [CrossRef] [Google Scholar]
  33. Lenoir O, Jasiek M, Henique C, et al. Endothelial cell and podocyte autophagy synergistically protect from diabetes-induced glomerulosclerosis. Autophagy 2015 ; 11 : 1130–1145. [CrossRef] [PubMed] [Google Scholar]
  34. Ding Y, Choi ME. Regulation of autophagy by TGF-beta: emerging role in kidney fibrosis. Semin Nephrol 2014 ; 34 : 62–71. [CrossRef] [PubMed] [Google Scholar]
  35. Chiang CK, Wang CC, Lu TF, et al. Involvement of endoplasmic reticulum stress, autophagy, and apoptosis in advanced glycation end products-induced glomerular mesangial cell injury. Sci Rep 2016 ; 6 : 34167. [CrossRef] [PubMed] [Google Scholar]
  36. Kaushal GP, Shah SV. Autophagy in acute kidney injury. Kidney Int 2016 ; 89 : 779–791. [CrossRef] [Google Scholar]
  37. Fougeray S, Pallet N. Mechanisms and biological functions of autophagy in diseased and ageing kidneys. Nat Rev Nephrol 2015 ; 11 : 34–45. [CrossRef] [PubMed] [Google Scholar]
  38. Li L, Zepeda-Orozco D, Black R, Lin F. Autophagy is a component of epithelial cell fate in obstructive uropathy. Am J Pathol 2010 ; 176 : 1767–1778. [CrossRef] [PubMed] [Google Scholar]
  39. Ding Y, Kim S, Lee SY, et al. Autophagy regulates TGF-beta expression and suppresses kidney fibrosis induced by unilateral ureteral obstruction. J Am Soc Nephrol 2014 ; 25 : 2835–2846. [CrossRef] [Google Scholar]
  40. Kim SI, Lee SY, Wang Z, et al. TGF-beta-activated kinase 1 is crucial in podocyte differentiation and glomerular capillary formation. J Am Soc Nephrol 2014 ; 25 : 1966–1978. [CrossRef] [Google Scholar]
  41. Brooks CR, Yeung MY, Brooks YS, et al. KIM-1-/TIM-1-mediated phagocytosis links ATG5-/ULK1-dependent clearance of apoptotic cells to antigen presentation. EMBO J 2015 ; 34 : 2441–2464. [CrossRef] [Google Scholar]
  42. Yang L, Brooks CR, Xiao S, et al. KIM-1-mediated phagocytosis reduces acute injury to the kidney. J Clin Invest 2015 ; 125 : 1620–1636. [CrossRef] [Google Scholar]
  43. Pampliega O, Orhon I, Patel B, et al. Functional interaction between autophagy and ciliogenesis. Nature 2013 ; 502 : 194–200. [CrossRef] [PubMed] [Google Scholar]
  44. Orhon I, Dupont N, Zaidan M, et al. Primary-cilium-dependent autophagy controls epithelial cell volume in response to fluid flow. Nat Cell Biol 2016 ; 18 : 657–667. [CrossRef] [PubMed] [Google Scholar]
  45. Tang Z, Lin MG, Stowe TR, et al. Autophagy promotes primary ciliogenesis by removing OFD1 from centriolar satellites. Nature 2013 ; 502 : 254–257. [CrossRef] [PubMed] [Google Scholar]
  46. Belibi F, Zafar I, Ravichandran K, et al. Hypoxia-inducible factor-1alpha (HIF-1alpha) and autophagy in polycystic kidney disease (PKD). Am J Physiol Renal Physiol 2011 ; 300 : F1235–F1243. [CrossRef] [PubMed] [Google Scholar]
  47. Shillingford JM, Murcia NS, Larson CH, et al. The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc Natl Acad Sci USA 2006 ; 103 : 5466–5471. [CrossRef] [Google Scholar]
  48. Liu S, Hartleben B, Kretz O, et al. Autophagy plays a critical role in kidney tubule maintenance, aging and ischemia-reperfusion injury. Autophagy 2012 ; 8 : 826–837. [CrossRef] [PubMed] [Google Scholar]
  49. Kume S, Uzu T, Horiike K, et al. Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J Clin Invest 2010 ; 120 : 1043–1055. [CrossRef] [Google Scholar]
  50. Kitada M, Kume S, Koya D. Role of sirtuins in kidney disease. Curr Opin Nephrol Hypertens 2014 ; 23 : 75–79. [CrossRef] [PubMed] [Google Scholar]
  51. Laclef C. coordonné par. Cils primaires et ciliopathies. Med Sci (Paris) 2014 ; 30 : 955–1046. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.