Free Access
Med Sci (Paris)
Volume 33, Number 3, Mars 2017
Page(s) 283 - 289
Section M/S Revues
Published online 03 April 2017
  1. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015 : a systematic analysis for the global burden of disease study 2015. Lancet 2016 ; 388 : 1459–1544. [CrossRef] [PubMed] [Google Scholar]
  2. Codogno P, Meijer AJ. Autophagy and signaling : their role in cell survival and cell death. Cell Death Differ 2005 ; 12 (suppl 2) : 1509–1518. [CrossRef] [PubMed] [Google Scholar]
  3. Taneike M, Yamaguchi O, Nakai A, et al. Inhibition of autophagy in the heart induces age-related cardiomyopathy. Autophagy 2010 ; 6 : 600–606. [CrossRef] [PubMed] [Google Scholar]
  4. Zhou J, Freeman TA, Ahmad F, et al. GSK-3alpha is a central regulator of age-related pathologies in mice. J Clin Invest 2013 ; 123 : 1821–1832. [CrossRef] [PubMed] [Google Scholar]
  5. Inuzuka Y, Okuda J, Kawashima T, et al. Suppression of phosphoinositide 3-kinase prevents cardiac aging in mice. Circulation 2009 ; 120 : 1695–1703. [CrossRef] [PubMed] [Google Scholar]
  6. Dutta D, Calvani R, Bernabei R, et al. Contribution of impaired mitochondrial autophagy to cardiac aging : mechanisms and therapeutic opportunities. Circ Res 2012 ; 110 : 1125–1138. [PubMed] [Google Scholar]
  7. Kubli DA, Quinsay MN, Gustafsson AB. Parkin deficiency results in accumulation of abnormal mitochondria in aging myocytes. Commun Integr Biol 2013 ; 6 : e24511. [CrossRef] [PubMed] [Google Scholar]
  8. Hoshino A, Mita Y, Okawa Y, et al. Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart. Nat Commun 2013 ; 4 : 2308. [CrossRef] [PubMed] [Google Scholar]
  9. Lin S, Wang Y, Zhang X, et al. HSP27 alleviates cardiac aging in mice via a mechanism involving antioxidation and mitophagy activation. Oxid Med Cell Longev 2016 ; 2016 : 2586706. [PubMed] [Google Scholar]
  10. Zhang H, Bosch-Marce M, Shimoda LA, et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 2008 ; 283 : 10892–10903. [CrossRef] [PubMed] [Google Scholar]
  11. Matsui Y, Takagi H, Qu X, et al. Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res 2007 ; 100 : 914–922. [PubMed] [Google Scholar]
  12. Kanamori H, Takemura G, Goto K, et al. Autophagy limits acute myocardial infarction induced by permanent coronary artery occlusion. Am J Physiol Heart Circ Physiol 2011 ; 300 : H2261–H2271. [CrossRef] [PubMed] [Google Scholar]
  13. Valentim L, Laurence KM, Townsend PA, et al. Urocortin inhibits Beclin1-mediated autophagic cell death in cardiac myocytes exposed to ischaemia/reperfusion injury. J Mol Cell Cardiol 2006 ; 40 : 846–852. [CrossRef] [PubMed] [Google Scholar]
  14. Yan L, Vatner DE, Kim SJ, et al. Autophagy in chronically ischemic myocardium. Proc Natl Acad Sci USA 2005 ; 102 : 13807–13812. [CrossRef] [Google Scholar]
  15. Yan WJ, Dong HL, Xiong LZ. The protective roles of autophagy in ischemic preconditioning. Acta Pharmacol Sin 2013 ; 34 : 636–643. [CrossRef] [PubMed] [Google Scholar]
  16. Ma X, Liu H, Foyil SR, et al. Impaired autophagosome clearance contributes to cardiomyocyte death in ischemia/reperfusion injury. Circulation 2012 ; 125 : 3170–3181. [CrossRef] [PubMed] [Google Scholar]
  17. Ma X, Liu H, Foyil SR, et al. Autophagy is impaired in cardiac ischemia-reperfusion injury. Autophagy 2012 ; 8 : 1394–1396. [CrossRef] [PubMed] [Google Scholar]
  18. Kostin S, Pool L, Elsasser A, et al. Myocytes die by multiple mechanisms in failing human hearts. Circ Res 2003 ; 92 : 715–724. [PubMed] [Google Scholar]
  19. Zhu H, Tannous P, Johnstone JL, et al. Cardiac autophagy is a maladaptive response to hemodynamic stress. J Clin Invest 2007 ; 117 : 1782–1793. [CrossRef] [PubMed] [Google Scholar]
  20. Marino G, Pietrocola F, Eisenberg T, et al. Regulation of autophagy by cytosolic acetyl-coenzyme A. Mol Cell 2014 ; 53 : 710–725. [CrossRef] [PubMed] [Google Scholar]
  21. Cao DJ, Wang ZV, Battiprolu PK, et al. Histone deacetylase (HDAC) inhibitors attenuate cardiac hypertrophy by suppressing autophagy. Proc Natl Acad Sci USA 2011 ; 108 : 4123–4128. [CrossRef] [Google Scholar]
  22. Nakai A, Yamaguchi O, Takeda T, et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med 2007 ; 13 : 619–624. [CrossRef] [PubMed] [Google Scholar]
  23. Bhuiyan MS, Pattison JS, Osinska H, et al. Enhanced autophagy ameliorates cardiac proteinopathy. J Clin Invest 2013 ; 123 : 5284–5297. [CrossRef] [PubMed] [Google Scholar]
  24. Kuzman JA, O’Connell TD, Gerdes AM. Rapamycin prevents thyroid hormone-induced cardiac hypertrophy. Endocrinology 2007 ; 148 : 3477–3484. [CrossRef] [PubMed] [Google Scholar]
  25. Bishu K, Ogut O, Kushwaha S, et al. Anti-remodeling effects of rapamycin in experimental heart failure : dose response and interaction with angiotensin receptor blockade. PLoS One 2013 ; 8 : e81325. [CrossRef] [PubMed] [Google Scholar]
  26. Li Y, Chen C, Yao F, et al. AMPK inhibits cardiac hypertrophy by promoting autophagy via mTORC1. Arch Biochem Biophys 2014 ; 558 : 79–86. [CrossRef] [PubMed] [Google Scholar]
  27. Wang X, Robbins J. Proteasomal and lysosomal protein degradation and heart disease. J Mol Cell Cardiol 2014 ; 71 : 16–24. [CrossRef] [PubMed] [Google Scholar]
  28. Tanaka Y, Guhde G, Suter A, et al. Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature 2000 ; 406 : 902–906. [CrossRef] [PubMed] [Google Scholar]
  29. Hashem SI, Perry CN, Bauer M, et al. Brief report : oxidative stress mediates cardiomyocyte apoptosis in a human model of Danon disease and heart failure. Stem Cells 2015 ; 33 : 2343–2350. [CrossRef] [PubMed] [Google Scholar]
  30. Xie Z, Lau K, Eby B, et al. Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice. Diabetes 2011 ; 60 : 1770–1778. [CrossRef] [PubMed] [Google Scholar]
  31. Xu X, Kobayashi S, Chen K, et al. Diminished autophagy limits cardiac injury in mouse models of type 1 diabetes. J Biol Chem 2013 ; 288 : 18077–18092. [CrossRef] [PubMed] [Google Scholar]
  32. Guo R, Zhang Y, Turdi S, Ren J. Adiponectin knockout accentuates high fat diet-induced obesity and cardiac dysfunction : role of autophagy. Biochim Biophys Acta 2013 ; 1832 : 1136–1148. [CrossRef] [PubMed] [Google Scholar]
  33. Mellor KM, Bell JR, Young MJ, et al. Myocardial autophagy activation and suppressed survival signaling is associated with insulin resistance in fructose-fed mice. J Mol Cell Cardiol 2011 ; 50 : 1035–1043. [CrossRef] [PubMed] [Google Scholar]
  34. Russo SB, Baicu CF, Van Laer A, et al. Ceramide synthase 5 mediates lipid-induced autophagy and hypertrophy in cardiomyocytes. J Clin Invest 2012 ; 122 : 3919–3930. [CrossRef] [PubMed] [Google Scholar]
  35. Xu X, Hua Y, Nair S, et al. Akt2 knockout preserves cardiac function in high-fat diet-induced obesity by rescuing cardiac autophagosome maturation. J Mol Cell Biol 2013 ; 5 : 61–63. [CrossRef] [PubMed] [Google Scholar]
  36. Martinet W, De Meyer GR. Autophagy in atherosclerosis: a cell survival and death phenomenon with therapeutic potential. Circ Res 2009 ; 104 : 304–317. [PubMed] [Google Scholar]
  37. Muller C, Salvayre R, Negre-Salvayre A, Vindis C. Oxidized LDLs trigger endoplasmic reticulum stress and autophagy : prevention by HDLs. Autophagy 2011 ; 7 : 541–543. [CrossRef] [PubMed] [Google Scholar]
  38. Jia G, Cheng G, Gangahar DM, Agrawal DK. Insulin-like growth factor-1 and TNF-alpha regulate autophagy through c-jun N-terminal kinase and Akt pathways in human atherosclerotic vascular smooth cells. Immunol Cell Biol 2006 ; 84 : 448–454. [CrossRef] [PubMed] [Google Scholar]
  39. He C, Zhu H, Zhang W, et al. 7-Ketocholesterol induces autophagy in vascular smooth muscle cells through Nox4 and Atg4B. Am J Pathol 2013 ; 183 : 626–637. [CrossRef] [PubMed] [Google Scholar]
  40. Ouimet M, Franklin V, Mak E, et al. Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell Metab 2011 ; 13 : 655–667. [CrossRef] [PubMed] [Google Scholar]
  41. Wang X, Li L, Niu X, et al. mTOR enhances foam cell formation by suppressing the autophagy pathway. DNA Cell Biol 2014 ; 33 : 198–204. [CrossRef] [PubMed] [Google Scholar]
  42. Le Guezennec X, Brichkina A, Huang YF, et al. Wip1-dependent regulation of autophagy, obesity, and atherosclerosis. Cell Metab 2012 ; 16 : 68–80. [CrossRef] [PubMed] [Google Scholar]
  43. Liao X, Sluimer JC, Wang Y, et al. Macrophage autophagy plays a protective role in advanced atherosclerosis. Cell Metab 2012 ; 15 : 545–553. [CrossRef] [PubMed] [Google Scholar]
  44. Razani B, Feng C, Coleman T, et al. Autophagy links inflammasomes to atherosclerotic progression. Cell Metab 2012 ; 15 : 534–544. [CrossRef] [PubMed] [Google Scholar]
  45. Xu K, Yang Y, Yan M, et al. Autophagy plays a protective role in free cholesterol overload-induced death of smooth muscle cells. J Lipid Res 2010 ; 51 : 2581–2590. [CrossRef] [PubMed] [Google Scholar]
  46. Grootaert MO, da Costa Martins PA, Bitsch N, et al. Defective autophagy in vascular smooth muscle cells accelerates senescence and promotes neointima formation and atherogenesis. Autophagy 2015 ; 11 : 2014–2032. [CrossRef] [PubMed] [Google Scholar]
  47. LaRocca TJ, Henson GD, Thorburn A, et al. Translational evidence that impaired autophagy contributes to arterial ageing. J Physiol 2012 ; 590 : 3305–3316. [CrossRef] [PubMed] [Google Scholar]
  48. Torisu T, Torisu K, Lee IH, et al. Autophagy regulates endothelial cell processing, maturation and secretion of von Willebrand factor. Nat Med 2013 ; 19 : 1281–1287. [CrossRef] [PubMed] [Google Scholar]
  49. Torisu K, Singh KK, Torisu T, et al. Intact endothelial autophagy is required to maintain vascular lipid homeostasis. Aging Cell 2016 ; 15 : 187–191. [CrossRef] [PubMed] [Google Scholar]
  50. Jeffery TK, Morrell NW. Molecular and cellular basis of pulmonary vascular remodeling in pulmonary hypertension. Prog Cardiovasc Dis 2002 ; 45 : 173–202. [CrossRef] [PubMed] [Google Scholar]
  51. Lee SJ, Smith A, Guo L, et al. Autophagic protein LC3B confers resistance against hypoxia-induced pulmonary hypertension. Am J Respir Crit Care Med 2011 ; 183 : 649–658. [CrossRef] [PubMed] [Google Scholar]
  52. Long L, Yang X, Southwood M, et al. Chloroquine prevents progression of experimental pulmonary hypertension via inhibition of autophagy and lysosomal bone morphogenetic protein type II receptor degradation. Circ Res 2013 ; 112 : 1159–1170. [PubMed] [Google Scholar]
  53. Zheng YH, Tian C, Meng Y, et al. Osteopontin stimulates autophagy via integrin/CD44 and p38 MAPK signaling pathways in vascular smooth muscle cells. J Cell Physiol 2012 ; 227 : 127–135. [Google Scholar]
  54. Rouer M, Xu BH, Xuan HJ, et al. Rapamycin limits the growth of established experimental abdominal aortic aneurysms. Eur J Vasc Endovasc Surg 2014 ; 47 : 493–500. [CrossRef] [PubMed] [Google Scholar]
  55. Ramadan A, Wheatcroft MD, Quan A, et al. Effects of long-term chloroquine administration on the natural history of aortic aneurysms in mice. Can J Physiol Pharmacol 2015 ; 93 : 641–648. [CrossRef] [PubMed] [Google Scholar]
  56. La Morel E. formation de l’autophagosome : un nouveau défi pour le biologiste cellulaire. Med Sci (Paris) 2017 ; 33 : 217–220. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  57. Vigié P, Camougrand N. Mitophagie et contrôle qualité des mitochondries. Med Sci (Paris) 2017 ; 33 : 231–237. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.