Free Access
Issue
Med Sci (Paris)
Volume 33, Number 2, Février 2017
Page(s) 151 - 158
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20173302010
Published online 27 February 2017
  1. Ravindran S. Barbara McClintock and the discovery of jumping genes. Proc Natl Acad Sci USA 2012 ; 109 : 20198–20199. [CrossRef] [Google Scholar]
  2. Hancks DC, Kazazian HH Roles for retrotransposon insertions in human disease. Mob DNA 2016 ; 7 : 9. [CrossRef] [PubMed] [Google Scholar]
  3. Pace JK, Feschotte C The evolutionary history of human DNA transposons : evidence for intense activity in the primate lineage. Genome Res 2007 ; 17 : 422–432. [CrossRef] [PubMed] [Google Scholar]
  4. Kassiotis G, Stoye JP Immune responses to endogenous retroelements : taking the bad with the good. Nat Rev Immunol 2016 ; 16 : 207–219. [CrossRef] [PubMed] [Google Scholar]
  5. Ostertag EM, Goodier JL, Zhang Y, et al. SVA Elements are nonautonomous retrotransposons that cause disease in humans. Am J Hum Genet 2003 ; 73 : 1444–1451. [CrossRef] [PubMed] [Google Scholar]
  6. Xu L, Tay CH, Huber BT, et al. Cloning of an infectious milk-borne mouse mammary tumor virus (MMTV) DNA from a mammary tumor that developed in an endogenous MMTV-free wild mouse. Virology 2000 ; 273 : 325–332. [CrossRef] [PubMed] [Google Scholar]
  7. Black SG, Arnaud F, Burghardt RC, et al. Viral particles of endogenous betaretroviruses are released in the sheep uterus and infect the conceptus trophectoderm in a transspecies embryo transfer model. J Virol 2010 ; 84 : 9078–9085. [CrossRef] [PubMed] [Google Scholar]
  8. Belshaw R, Katzourakis A, Paces J, et al. High copy number in human endogenous retrovirus families is associated with copying mechanisms in addition to reinfection. Mol Biol Evol 2005 ; 22 : 814–817. [CrossRef] [PubMed] [Google Scholar]
  9. Marchi E, Kanapin A, Magiorkinis G, et al. Unfixed endogenous retroviral insertions in the human population. J Virol 2014 ; 88 : 9529–9537. [CrossRef] [PubMed] [Google Scholar]
  10. Lemos de Matos A, de Sousa-Pereira P, Lissovsky AA, et al. Endogenization of mouse mammary tumor virus (MMTV)-like elements in genomes of pikas (Ochotona sp.). Virus Res 2015 ; 210 : 22–26. [CrossRef] [PubMed] [Google Scholar]
  11. Tarlinton RE, Meers J, Young PR Retroviral invasion of the koala genome. Nature 2006 ; 442 : 79–81. [CrossRef] [PubMed] [Google Scholar]
  12. Denner J, Young PR Koala retroviruses : characterization and impact on the life of koalas. Retrovirology 2013 ; 10 : 108. [CrossRef] [PubMed] [Google Scholar]
  13. Xu W, Eiden MV Koala retroviruses : evolution and disease dynamics. Annu Rev Virol 2015 ; 2 : 119–134. [CrossRef] [PubMed] [Google Scholar]
  14. Colson P, Ravaux I, Tamalet C, et al. HIV infection en route to endogenization : two cases. Clin Microbiol Infect 2014 ; 20 : 1280–1288. [CrossRef] [PubMed] [Google Scholar]
  15. Katoh I, Kurata S Association of endogenous retroviruses and long terminal repeats with human disorders. Front Oncol 2013 ; 3 : 234. [CrossRef] [PubMed] [Google Scholar]
  16. Chen G, Li R, Shi L, et al. Revealing the missing expressed genes beyond the human reference genome by RNA-Seq. BMC Genomics 2011 ; 12 : 590. [CrossRef] [PubMed] [Google Scholar]
  17. Chen G, Wang C, Shi L, et al. Comprehensively identifying and characterizing the missing gene sequences in human reference genome with integrated analytic approaches. Hum Genet 2013 ; 132 : 899–911. [CrossRef] [PubMed] [Google Scholar]
  18. Seifarth W, Frank O, Zeilfelder U, et al. Comprehensive analysis of human endogenous retrovirus transcriptional activity in human tissues with a retrovirus-specific microarray. J Virol 2005 ; 79 : 341–352. [CrossRef] [PubMed] [Google Scholar]
  19. Nath A, Küry P, Olival GS do, et al. First international workshop on human endogenous retroviruses and diseases, HERVs and disease 2015. Mob DNA 2015 ; 6 : 20. [Google Scholar]
  20. Le Dantec C, Vallet S, Brooks WH, et al. Human endogenous retrovirus group E and its involvement in diseases. Viruses 2015 ; 7 : 1238–1257. [CrossRef] [PubMed] [Google Scholar]
  21. Trela M, Nelson PN, Rylance PB The role of molecular mimicry and other factors in the association of human endogenous retroviruses and autoimmunity. APMIS 2016 ; 124 : 88–104. [CrossRef] [PubMed] [Google Scholar]
  22. Vargiu L, Rodriguez-Tomé P, Sperber GO, et al. Classification and characterization of human endogenous retroviruses; mosaic forms are common. Retrovirology 2016 ; 13 : 7. [CrossRef] [PubMed] [Google Scholar]
  23. Li F, Karlsson H Expression and regulation of human endogenous retrovirus W elements. APMIS 2016 ; 124 : 52–66. [CrossRef] [PubMed] [Google Scholar]
  24. Escalera-Zamudio M, Greenwood AD On the classification and evolution of endogenous retrovirus : human endogenous retroviruses may not be human after all. APMIS 2016 ; 124 : 44–51. [CrossRef] [PubMed] [Google Scholar]
  25. Dube D, Contreras-Galindo R, He S, et al. Genomic flexibility of human endogenous retrovirus type K. J Virol 2014 ; 88 : 9673–9682. [CrossRef] [PubMed] [Google Scholar]
  26. Weiss RA The discovery of endogenous retroviruses. Retrovirology 2006 ; 3 : 3–67. [CrossRef] [PubMed] [Google Scholar]
  27. Cloyd MW. Human retroviruses. In: Baron S (ed). Medical microbiology, 4th ed, chapter 62. Galveston (TX) : University of Texas Medical Branch, 1996. [Google Scholar]
  28. Henzy JE, Gifford RJ, Johnson WE, et al. A novel recombinant retrovirus in the genomes of modern birds combines features of avian and mammalian retroviruses. J Virol 2014 ; 88 : 2398–2405. [CrossRef] [PubMed] [Google Scholar]
  29. Chong AY, Kojima KK, Jurka J, et al. Evolution and gene capture in ancient endogenous retroviruses - insights from the crocodilian genomes. Retrovirology 2014 ; 11 : 71. [CrossRef] [PubMed] [Google Scholar]
  30. Jern P, Sperber GO, Blomberg J Use of endogenous retroviral sequences (ERVs) and structural markers for retroviral phylogenetic inference and taxonomy. Retrovirology 2005 ; 2 : 50. [CrossRef] [PubMed] [Google Scholar]
  31. Mayer J, Blomberg J, Seal RL A revised nomenclature for transcribed human endogenous retroviral loci. Mob DNA 2011 ; 2 : 7. [CrossRef] [PubMed] [Google Scholar]
  32. Blomberg J, Benachenhou F, Blikstad V, et al. Classification and nomenclature of endogenous retroviral sequences (ERVs): problems and recommendations. Gene 2009 ; 448 : 115–123. [CrossRef] [PubMed] [Google Scholar]
  33. Pavlícek A, Paces J, Elleder D, et al. Processed pseudogenes of human endogenous retroviruses generated by LINEs : their integration, stability, and distribution. Genome Res 2002 ; 12 : 391–399. [CrossRef] [PubMed] [Google Scholar]
  34. Li F, Nellåker C, Yolken RH, et al. A systematic evaluation of expression of HERV-W elements; influence of genomic context, viral structure and orientation. BMC Genomics 2011 ; 12 : 22. [CrossRef] [PubMed] [Google Scholar]
  35. Subramanian RP, Wildschutte JH, Russo C, et al. Identification, characterization, and comparative genomic distribution of the HERV-K (HML-2) group of human endogenous retroviruses. Retrovirology 2011 ; 8 : 90. [CrossRef] [PubMed] [Google Scholar]
  36. Macfarlane C, Simmonds P Allelic variation of HERV-K(HML-2) endogenous retroviral elements in human populations. J Mol Evol 2004 ; 59 : 642–656. [CrossRef] [PubMed] [Google Scholar]
  37. Wildschutte JH, Ram D, Subramanian R, et al. The distribution of insertionally polymorphic endogenous retroviruses in breast cancer patients and cancer-free controls. Retrovirology 2014 ; 11 : 62. [CrossRef] [PubMed] [Google Scholar]
  38. Garcia-Montojo M, Dominguez-Mozo M, Arias-Leal A, et al. The DNA copy number of human endogenous retrovirus-W (MSRV-type) is increased in multiple sclerosis patients and is influenced by gender and disease severity. PLoS One 2013 ; 8 : e53623. [CrossRef] [PubMed] [Google Scholar]
  39. Wildschutte JH, Williams ZH, Montesion M, et al. Discovery of unfixed endogenous retrovirus insertions in diverse human populations. Proc Natl Acad Sci USA 2016 ; 113 : E2326–E2334. [CrossRef] [Google Scholar]
  40. Xing J, Witherspoon DJ, Jorde LB Mobile element biology : new possibilities with high-throughput sequencing. Trends Genet 2013 ; 29 : 280–289. [CrossRef] [PubMed] [Google Scholar]
  41. Jern P, Sperber GO, Blomberg J Divergent patterns of recent retroviral integrations in the human and chimpanzee genomes: probable transmissions between other primates and chimpanzees. J Virol 2006 ; 80 : 1367–1375. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.