Free Access
Med Sci (Paris)
Volume 33, Number 2, Février 2017
Page(s) 143 - 150
Section M/S Revues
Published online 27 February 2017
  1. Bell SP, Dutta A. DNA replication in eukaryotic cells. Annu Rev Biochem 2002 ; 71 : 333–374. [CrossRef] [PubMed] [Google Scholar]
  2. Fragkos M, Ganier O, Coulombe P, Méchali M. DNA replication origin activation in space and time. Nat Rev Mol Cell Biol 2015 ; 16 : 360–374. [CrossRef] [PubMed] [Google Scholar]
  3. Hyrien O. Peaks cloaked in the mist : the landscape of mammalian replication origins. J Cell Biol 2015 ; 208 : 147–160. [CrossRef] [PubMed] [Google Scholar]
  4. Cadoret JC, Meisch F, Hassan-Zadeh V, et al. Genome-wide studies highlight indirect links between human replication origins and gene regulation. Proc Natl Acad Sci USA 2008 ; 105 : 15837–15842. [CrossRef] [Google Scholar]
  5. Besnard E, Babled A, Lapasset L, et al. Unraveling cell type-specific and reprogrammable human replication origin signatures associated with G-quadruplex consensus motifs. Nat Struct Mol Biol 2012 ; 19 : 837–844. [CrossRef] [PubMed] [Google Scholar]
  6. Dellino GI, Cittaro D, Piccioni R, et al. Genome-wide mapping of human DNA-replication origins : levels of transcription at ORC1 sites regulate origin selection and replication timing. Genome Res 2013 ; 23 : 1–11. [CrossRef] [PubMed] [Google Scholar]
  7. Mesner LD, Valsakumar V, Cieslik M, et al. Bubble-seq analysis of the human genome reveals distinct chromatin-mediated mechanisms for regulating early- and late-firing origins. Genome Res 2013 ; 23 : 1774–1788. [CrossRef] [PubMed] [Google Scholar]
  8. Picard F, Cadoret JC, Audit B, et al. The spatiotemporal program of DNA replication is associated with specific combinations of chromatin marks in human cells. PLoS Genet 2014 ; 10 : e1004282. [CrossRef] [PubMed] [Google Scholar]
  9. Petryk N, Kahli M, d’Aubenton-Carafa Y, et al. Replication landscape of the human genome. Nat Commun 2016 ; 7 : 10208. [PubMed] [Google Scholar]
  10. Miotto B, Ji Z, Struhl K. Selectivity of ORC binding sites and the relation to replication timing, fragile sites, and deletions in cancers. Proc Natl Acad Sci USA 2016 ; 113 : E4810–E4819. [CrossRef] [Google Scholar]
  11. Letessier A, Birnbaum D, Debatisse M, Chaffanet M. La pauvreté en sites d’initiation de la réplication rend-elle fragile certaines régions du génome ? Med Sci (Paris) 2011 ; 27 : 707–709. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  12. Letessier A, Millot GA, Koundrioukoff S, et al. Cell-type-specific replication initiation programs set fragility of the FRA3B fragile site. Nature 2011 ; 470 : 120–123. [CrossRef] [PubMed] [Google Scholar]
  13. Ryba T, Battaglia D, Chang BH, et al. Abnormal developmental control of replication-timing domains in pediatric acute lymphoblastic leukemia. Genome Res 2012 ; 22 : 1833–1844. [CrossRef] [PubMed] [Google Scholar]
  14. Smith L, Plug A, Thayer M. Delayed replication timing leads to delayed mitotic chromosome condensation and chromosomal instability of chromosome translocations. Proc Natl Acad Sci USA 2001 ; 98 : 13300–13305. [CrossRef] [Google Scholar]
  15. Polak P, Karlic´ R, Koren A, et al. Cell-of-origin chromatin organization shapes the mutational landscape of cancer. Nature 2015 ; 518 : 360–364. [CrossRef] [PubMed] [Google Scholar]
  16. Lombraña R, Almeida R, Revuelta I, et al. High-resolution analysis of DNA synthesis start sites and nucleosome architecture at efficient mammalian replication origins. EMBO J 2013 ; 32 : 2631–2644. [CrossRef] [PubMed] [Google Scholar]
  17. Thomae AW, Pich D, Brocher J, et al. Interaction between HMGA1a and the origin recognition complex creates site-specific replication origins. Proc Natl Acad Sci USA 2008 ; 105 : 1692–1697. [CrossRef] [Google Scholar]
  18. Benatti P, Belluti S, Miotto B, et al. Direct non transcriptional role of NF-Y in DNA replication. Biochim Biophys Acta 2016 ; 1863 : 673–685. [CrossRef] [PubMed] [Google Scholar]
  19. Dominguez-Sola D, Ying CY, Grandori C, et al. Non-transcriptional control of DNA replication by c-Myc. Nature 2007 ; 448 : 445–451. [CrossRef] [PubMed] [Google Scholar]
  20. Miotto B, Struhl K. HBO1 histone acetylase is a coactivator of the replication licensing factor Cdt1. Genes Dev 2008 ; 22 : 2633–2638. [CrossRef] [PubMed] [Google Scholar]
  21. Miotto B, Struhl K. Differential gene regulation by selective association of transcriptional coactivators and bZIP DNA-binding domains. Mol Cell Biol 2006 ; 26 : 5969–5982. [CrossRef] [PubMed] [Google Scholar]
  22. Feng Y, Vlassis A, Roques C, et al. BRPF3-HBO1 regulates replication origin activation and histone H3K14 acetylation. EMBO J 2016 ; 35 : 176–192. [CrossRef] [PubMed] [Google Scholar]
  23. Miotto B, Struhl K. JNK1 phosphorylation of Cdt1 inhibits recruitment of HBO1 histone acetylase and blocks replication licensing in response to stress. Mol Cell 2011 ; 44 : 62–71. [CrossRef] [PubMed] [Google Scholar]
  24. Grégoire D, Brodolin K, Méchali M. HoxB domain induction silences DNA replication origins in the locus and specifies a single origin at its boundary. EMBO Rep 2006 ; 7 : 812–816. [PubMed] [Google Scholar]
  25. Hyrien O, Maric C, Méchali M. Transition in specification of embryonic metazoan DNA replication origins. Science 1995 ; 270 : 994–997. [Google Scholar]
  26. Powell SK, MacAlpine HK, Prinz JA, et al. Dynamic loading and redistribution of the Mcm2-7 helicase complex through the cell cycle. EMBO J 2015 ; 34 : 531–543. [CrossRef] [PubMed] [Google Scholar]
  27. Norio P, Kosiyatrakul S, Yang Q, et al. Progressive activation of DNA replication initiation in large domains of the immunoglobulin heavy chain locus during B cell development. Mol Cell 2005 ; 20 : 575–587. [CrossRef] [PubMed] [Google Scholar]
  28. Gros J, Kumar C, Lynch G, et al. Post-licensing Specification of Eukaryotic Replication Origins by Facilitated Mcm2-7 Sliding along DNA. Mol Cell 2015 ; 60 : 797–807. [CrossRef] [PubMed] [Google Scholar]
  29. Ray-Gallet D, Gérard A, Polo S, Almouzni G. Variations sur le thème du code histone. Med Sci (Paris) 2005 ; 21 : 384–389. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  30. Miotto B, Struhl K. De la régulation du génome à la progression tumorale. Med Sci (Paris) 2007 ; 23 : 735–740. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  31. Pradel LC, Vanhille L, Spicuglia S. Projet européen Blueprint. Med Sci (Paris) 2015 ; 31 : 236–238. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  32. Tardat M, Brustel J, Kirsh O, et al. The histone H4 Lys 20 methyltransferase PR-Set7 regulates replication origins in mammalian cells. Nat Cell Biol 2010 ; 12 : 1086–1093. [CrossRef] [PubMed] [Google Scholar]
  33. Kuo AJ, Song J, Cheung P, et al. The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier-Gorlin syndrome. Nature 2012 ; 484 : 115–119. [CrossRef] [PubMed] [Google Scholar]
  34. Bicknell LS, Walker S, Klingseisen A, et al. Mutations in ORC1, encoding the largest subunit of the origin recognition complex, cause microcephalic primordial dwarfism resembling Meier-Gorlin syndrome. Nat Genet 2011 ; 43 : 350–355. [Google Scholar]
  35. Suchyta M, Miotto B, McGarry TJ. An inactive geminin mutant that binds cdt1. Genes (Basel) 2015 ; 6 : 252–266. [PubMed] [Google Scholar]
  36. Miotto B, Struhl K. HBO1 histone acetylase activity is essential for DNA replication licensing and inhibited by Geminin. Mol Cell 2010 ; 37 : 57–66. [CrossRef] [PubMed] [Google Scholar]
  37. Hoshina S, Yura K, Teranishi H, et al. Human origin recognition complex binds preferentially to G-quadruplex-preferable RNA and single-stranded DNA. J Biol Chem 2013 ; 288 : 30161–30171. [CrossRef] [PubMed] [Google Scholar]
  38. Sequeira-Mendes J, Gómez M. On the opportunistic nature of transcription and replication initiation in the metazoan genome. Bioessays 2012 ; 34 : 119–125. [CrossRef] [PubMed] [Google Scholar]
  39. Bartholdy B, Mukhopadhyay R, Lajugie J, et al. Allele-specific analysis of DNA replication origins in mammalian cells. Nat Commun 2015 ; 6 : 7051. [PubMed] [Google Scholar]
  40. Valton AL, Hassan-Zadeh V, Lema I, et al. G4 motifs affect origin positioning and efficiency in two vertebrate replicators. EMBO J 2014 ; 33 : 732–746. [CrossRef] [PubMed] [Google Scholar]
  41. de Procé Marion. S. Des fragments d’ADN synthétisés par l’ADN polymérase α modifient notre génome. Med Sci (Paris) 2015 ; 31 : 821–823. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.