Accès gratuit
Numéro |
Med Sci (Paris)
Volume 33, Numéro 2, Février 2017
|
|
---|---|---|
Page(s) | 143 - 150 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/20173302009 | |
Publié en ligne | 27 février 2017 |
- Bell SP, Dutta A. DNA replication in eukaryotic cells. Annu Rev Biochem 2002 ; 71 : 333–374. [CrossRef] [PubMed] [Google Scholar]
- Fragkos M, Ganier O, Coulombe P, Méchali M. DNA replication origin activation in space and time. Nat Rev Mol Cell Biol 2015 ; 16 : 360–374. [CrossRef] [PubMed] [Google Scholar]
- Hyrien O. Peaks cloaked in the mist : the landscape of mammalian replication origins. J Cell Biol 2015 ; 208 : 147–160. [CrossRef] [PubMed] [Google Scholar]
- Cadoret JC, Meisch F, Hassan-Zadeh V, et al. Genome-wide studies highlight indirect links between human replication origins and gene regulation. Proc Natl Acad Sci USA 2008 ; 105 : 15837–15842. [CrossRef] [Google Scholar]
- Besnard E, Babled A, Lapasset L, et al. Unraveling cell type-specific and reprogrammable human replication origin signatures associated with G-quadruplex consensus motifs. Nat Struct Mol Biol 2012 ; 19 : 837–844. [CrossRef] [PubMed] [Google Scholar]
- Dellino GI, Cittaro D, Piccioni R, et al. Genome-wide mapping of human DNA-replication origins : levels of transcription at ORC1 sites regulate origin selection and replication timing. Genome Res 2013 ; 23 : 1–11. [CrossRef] [PubMed] [Google Scholar]
- Mesner LD, Valsakumar V, Cieslik M, et al. Bubble-seq analysis of the human genome reveals distinct chromatin-mediated mechanisms for regulating early- and late-firing origins. Genome Res 2013 ; 23 : 1774–1788. [CrossRef] [PubMed] [Google Scholar]
- Picard F, Cadoret JC, Audit B, et al. The spatiotemporal program of DNA replication is associated with specific combinations of chromatin marks in human cells. PLoS Genet 2014 ; 10 : e1004282. [CrossRef] [PubMed] [Google Scholar]
- Petryk N, Kahli M, d’Aubenton-Carafa Y, et al. Replication landscape of the human genome. Nat Commun 2016 ; 7 : 10208. [PubMed] [Google Scholar]
- Miotto B, Ji Z, Struhl K. Selectivity of ORC binding sites and the relation to replication timing, fragile sites, and deletions in cancers. Proc Natl Acad Sci USA 2016 ; 113 : E4810–E4819. [CrossRef] [Google Scholar]
- Letessier A, Birnbaum D, Debatisse M, Chaffanet M. La pauvreté en sites d’initiation de la réplication rend-elle fragile certaines régions du génome ? Med Sci (Paris) 2011 ; 27 : 707–709. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Letessier A, Millot GA, Koundrioukoff S, et al. Cell-type-specific replication initiation programs set fragility of the FRA3B fragile site. Nature 2011 ; 470 : 120–123. [CrossRef] [PubMed] [Google Scholar]
- Ryba T, Battaglia D, Chang BH, et al. Abnormal developmental control of replication-timing domains in pediatric acute lymphoblastic leukemia. Genome Res 2012 ; 22 : 1833–1844. [CrossRef] [PubMed] [Google Scholar]
- Smith L, Plug A, Thayer M. Delayed replication timing leads to delayed mitotic chromosome condensation and chromosomal instability of chromosome translocations. Proc Natl Acad Sci USA 2001 ; 98 : 13300–13305. [CrossRef] [Google Scholar]
- Polak P, Karlic´ R, Koren A, et al. Cell-of-origin chromatin organization shapes the mutational landscape of cancer. Nature 2015 ; 518 : 360–364. [CrossRef] [PubMed] [Google Scholar]
- Lombraña R, Almeida R, Revuelta I, et al. High-resolution analysis of DNA synthesis start sites and nucleosome architecture at efficient mammalian replication origins. EMBO J 2013 ; 32 : 2631–2644. [CrossRef] [PubMed] [Google Scholar]
- Thomae AW, Pich D, Brocher J, et al. Interaction between HMGA1a and the origin recognition complex creates site-specific replication origins. Proc Natl Acad Sci USA 2008 ; 105 : 1692–1697. [CrossRef] [Google Scholar]
- Benatti P, Belluti S, Miotto B, et al. Direct non transcriptional role of NF-Y in DNA replication. Biochim Biophys Acta 2016 ; 1863 : 673–685. [CrossRef] [PubMed] [Google Scholar]
- Dominguez-Sola D, Ying CY, Grandori C, et al. Non-transcriptional control of DNA replication by c-Myc. Nature 2007 ; 448 : 445–451. [CrossRef] [PubMed] [Google Scholar]
- Miotto B, Struhl K. HBO1 histone acetylase is a coactivator of the replication licensing factor Cdt1. Genes Dev 2008 ; 22 : 2633–2638. [CrossRef] [PubMed] [Google Scholar]
- Miotto B, Struhl K. Differential gene regulation by selective association of transcriptional coactivators and bZIP DNA-binding domains. Mol Cell Biol 2006 ; 26 : 5969–5982. [CrossRef] [PubMed] [Google Scholar]
- Feng Y, Vlassis A, Roques C, et al. BRPF3-HBO1 regulates replication origin activation and histone H3K14 acetylation. EMBO J 2016 ; 35 : 176–192. [CrossRef] [PubMed] [Google Scholar]
- Miotto B, Struhl K. JNK1 phosphorylation of Cdt1 inhibits recruitment of HBO1 histone acetylase and blocks replication licensing in response to stress. Mol Cell 2011 ; 44 : 62–71. [CrossRef] [PubMed] [Google Scholar]
- Grégoire D, Brodolin K, Méchali M. HoxB domain induction silences DNA replication origins in the locus and specifies a single origin at its boundary. EMBO Rep 2006 ; 7 : 812–816. [PubMed] [Google Scholar]
- Hyrien O, Maric C, Méchali M. Transition in specification of embryonic metazoan DNA replication origins. Science 1995 ; 270 : 994–997. [Google Scholar]
- Powell SK, MacAlpine HK, Prinz JA, et al. Dynamic loading and redistribution of the Mcm2-7 helicase complex through the cell cycle. EMBO J 2015 ; 34 : 531–543. [CrossRef] [PubMed] [Google Scholar]
- Norio P, Kosiyatrakul S, Yang Q, et al. Progressive activation of DNA replication initiation in large domains of the immunoglobulin heavy chain locus during B cell development. Mol Cell 2005 ; 20 : 575–587. [CrossRef] [PubMed] [Google Scholar]
- Gros J, Kumar C, Lynch G, et al. Post-licensing Specification of Eukaryotic Replication Origins by Facilitated Mcm2-7 Sliding along DNA. Mol Cell 2015 ; 60 : 797–807. [CrossRef] [PubMed] [Google Scholar]
- Ray-Gallet D, Gérard A, Polo S, Almouzni G. Variations sur le thème du code histone. Med Sci (Paris) 2005 ; 21 : 384–389. [Google Scholar]
- Miotto B, Struhl K. De la régulation du génome à la progression tumorale. Med Sci (Paris) 2007 ; 23 : 735–740. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Pradel LC, Vanhille L, Spicuglia S. Projet européen Blueprint. Med Sci (Paris) 2015 ; 31 : 236–238. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Tardat M, Brustel J, Kirsh O, et al. The histone H4 Lys 20 methyltransferase PR-Set7 regulates replication origins in mammalian cells. Nat Cell Biol 2010 ; 12 : 1086–1093. [CrossRef] [PubMed] [Google Scholar]
- Kuo AJ, Song J, Cheung P, et al. The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier-Gorlin syndrome. Nature 2012 ; 484 : 115–119. [CrossRef] [PubMed] [Google Scholar]
- Bicknell LS, Walker S, Klingseisen A, et al. Mutations in ORC1, encoding the largest subunit of the origin recognition complex, cause microcephalic primordial dwarfism resembling Meier-Gorlin syndrome. Nat Genet 2011 ; 43 : 350–355. [Google Scholar]
- Suchyta M, Miotto B, McGarry TJ. An inactive geminin mutant that binds cdt1. Genes (Basel) 2015 ; 6 : 252–266. [PubMed] [Google Scholar]
- Miotto B, Struhl K. HBO1 histone acetylase activity is essential for DNA replication licensing and inhibited by Geminin. Mol Cell 2010 ; 37 : 57–66. [CrossRef] [PubMed] [Google Scholar]
- Hoshina S, Yura K, Teranishi H, et al. Human origin recognition complex binds preferentially to G-quadruplex-preferable RNA and single-stranded DNA. J Biol Chem 2013 ; 288 : 30161–30171. [CrossRef] [PubMed] [Google Scholar]
- Sequeira-Mendes J, Gómez M. On the opportunistic nature of transcription and replication initiation in the metazoan genome. Bioessays 2012 ; 34 : 119–125. [CrossRef] [PubMed] [Google Scholar]
- Bartholdy B, Mukhopadhyay R, Lajugie J, et al. Allele-specific analysis of DNA replication origins in mammalian cells. Nat Commun 2015 ; 6 : 7051. [PubMed] [Google Scholar]
- Valton AL, Hassan-Zadeh V, Lema I, et al. G4 motifs affect origin positioning and efficiency in two vertebrate replicators. EMBO J 2014 ; 33 : 732–746. [CrossRef] [PubMed] [Google Scholar]
- de Procé Marion. S. Des fragments d’ADN synthétisés par l’ADN polymérase α modifient notre génome. Med Sci (Paris) 2015 ; 31 : 821–823. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.