Accès gratuit
Numéro
Med Sci (Paris)
Volume 33, Numéro 2, Février 2017
Page(s) 151 - 158
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20173302010
Publié en ligne 27 février 2017
  1. Ravindran S. Barbara McClintock and the discovery of jumping genes. Proc Natl Acad Sci USA 2012 ; 109 : 20198–20199. [CrossRef] [Google Scholar]
  2. Hancks DC, Kazazian HH Roles for retrotransposon insertions in human disease. Mob DNA 2016 ; 7 : 9. [Google Scholar]
  3. Pace JK, Feschotte C The evolutionary history of human DNA transposons : evidence for intense activity in the primate lineage. Genome Res 2007 ; 17 : 422–432. [CrossRef] [PubMed] [Google Scholar]
  4. Kassiotis G, Stoye JP Immune responses to endogenous retroelements : taking the bad with the good. Nat Rev Immunol 2016 ; 16 : 207–219. [CrossRef] [PubMed] [Google Scholar]
  5. Ostertag EM, Goodier JL, Zhang Y, et al. SVA Elements are nonautonomous retrotransposons that cause disease in humans. Am J Hum Genet 2003 ; 73 : 1444–1451. [CrossRef] [PubMed] [Google Scholar]
  6. Xu L, Tay CH, Huber BT, et al. Cloning of an infectious milk-borne mouse mammary tumor virus (MMTV) DNA from a mammary tumor that developed in an endogenous MMTV-free wild mouse. Virology 2000 ; 273 : 325–332. [CrossRef] [PubMed] [Google Scholar]
  7. Black SG, Arnaud F, Burghardt RC, et al. Viral particles of endogenous betaretroviruses are released in the sheep uterus and infect the conceptus trophectoderm in a transspecies embryo transfer model. J Virol 2010 ; 84 : 9078–9085. [CrossRef] [PubMed] [Google Scholar]
  8. Belshaw R, Katzourakis A, Paces J, et al. High copy number in human endogenous retrovirus families is associated with copying mechanisms in addition to reinfection. Mol Biol Evol 2005 ; 22 : 814–817. [CrossRef] [PubMed] [Google Scholar]
  9. Marchi E, Kanapin A, Magiorkinis G, et al. Unfixed endogenous retroviral insertions in the human population. J Virol 2014 ; 88 : 9529–9537. [CrossRef] [PubMed] [Google Scholar]
  10. Lemos de Matos A, de Sousa-Pereira P, Lissovsky AA, et al. Endogenization of mouse mammary tumor virus (MMTV)-like elements in genomes of pikas (Ochotona sp.). Virus Res 2015 ; 210 : 22–26. [CrossRef] [PubMed] [Google Scholar]
  11. Tarlinton RE, Meers J, Young PR Retroviral invasion of the koala genome. Nature 2006 ; 442 : 79–81. [CrossRef] [PubMed] [Google Scholar]
  12. Denner J, Young PR Koala retroviruses : characterization and impact on the life of koalas. Retrovirology 2013 ; 10 : 108. [CrossRef] [PubMed] [Google Scholar]
  13. Xu W, Eiden MV Koala retroviruses : evolution and disease dynamics. Annu Rev Virol 2015 ; 2 : 119–134. [CrossRef] [PubMed] [Google Scholar]
  14. Colson P, Ravaux I, Tamalet C, et al. HIV infection en route to endogenization : two cases. Clin Microbiol Infect 2014 ; 20 : 1280–1288. [Google Scholar]
  15. Katoh I, Kurata S Association of endogenous retroviruses and long terminal repeats with human disorders. Front Oncol 2013 ; 3 : 234. [Google Scholar]
  16. Chen G, Li R, Shi L, et al. Revealing the missing expressed genes beyond the human reference genome by RNA-Seq. BMC Genomics 2011 ; 12 : 590. [CrossRef] [PubMed] [Google Scholar]
  17. Chen G, Wang C, Shi L, et al. Comprehensively identifying and characterizing the missing gene sequences in human reference genome with integrated analytic approaches. Hum Genet 2013 ; 132 : 899–911. [CrossRef] [PubMed] [Google Scholar]
  18. Seifarth W, Frank O, Zeilfelder U, et al. Comprehensive analysis of human endogenous retrovirus transcriptional activity in human tissues with a retrovirus-specific microarray. J Virol 2005 ; 79 : 341–352. [CrossRef] [PubMed] [Google Scholar]
  19. Nath A, Küry P, Olival GS do, et al. First international workshop on human endogenous retroviruses and diseases, HERVs and disease 2015. Mob DNA 2015 ; 6 : 20. [Google Scholar]
  20. Le Dantec C, Vallet S, Brooks WH, et al. Human endogenous retrovirus group E and its involvement in diseases. Viruses 2015 ; 7 : 1238–1257. [CrossRef] [PubMed] [Google Scholar]
  21. Trela M, Nelson PN, Rylance PB The role of molecular mimicry and other factors in the association of human endogenous retroviruses and autoimmunity. APMIS 2016 ; 124 : 88–104. [Google Scholar]
  22. Vargiu L, Rodriguez-Tomé P, Sperber GO, et al. Classification and characterization of human endogenous retroviruses; mosaic forms are common. Retrovirology 2016 ; 13 : 7. [CrossRef] [PubMed] [Google Scholar]
  23. Li F, Karlsson H Expression and regulation of human endogenous retrovirus W elements. APMIS 2016 ; 124 : 52–66. [Google Scholar]
  24. Escalera-Zamudio M, Greenwood AD On the classification and evolution of endogenous retrovirus : human endogenous retroviruses may not be human after all. APMIS 2016 ; 124 : 44–51. [Google Scholar]
  25. Dube D, Contreras-Galindo R, He S, et al. Genomic flexibility of human endogenous retrovirus type K. J Virol 2014 ; 88 : 9673–9682. [CrossRef] [PubMed] [Google Scholar]
  26. Weiss RA The discovery of endogenous retroviruses. Retrovirology 2006 ; 3 : 3–67. [CrossRef] [PubMed] [Google Scholar]
  27. Cloyd MW. Human retroviruses. In: Baron S (ed). Medical microbiology, 4th ed, chapter 62. Galveston (TX) : University of Texas Medical Branch, 1996. [Google Scholar]
  28. Henzy JE, Gifford RJ, Johnson WE, et al. A novel recombinant retrovirus in the genomes of modern birds combines features of avian and mammalian retroviruses. J Virol 2014 ; 88 : 2398–2405. [CrossRef] [PubMed] [Google Scholar]
  29. Chong AY, Kojima KK, Jurka J, et al. Evolution and gene capture in ancient endogenous retroviruses - insights from the crocodilian genomes. Retrovirology 2014 ; 11 : 71. [CrossRef] [PubMed] [Google Scholar]
  30. Jern P, Sperber GO, Blomberg J Use of endogenous retroviral sequences (ERVs) and structural markers for retroviral phylogenetic inference and taxonomy. Retrovirology 2005 ; 2 : 50. [CrossRef] [PubMed] [Google Scholar]
  31. Mayer J, Blomberg J, Seal RL A revised nomenclature for transcribed human endogenous retroviral loci. Mob DNA 2011 ; 2 : 7. [Google Scholar]
  32. Blomberg J, Benachenhou F, Blikstad V, et al. Classification and nomenclature of endogenous retroviral sequences (ERVs): problems and recommendations. Gene 2009 ; 448 : 115–123. [Google Scholar]
  33. Pavlícek A, Paces J, Elleder D, et al. Processed pseudogenes of human endogenous retroviruses generated by LINEs : their integration, stability, and distribution. Genome Res 2002 ; 12 : 391–399. [CrossRef] [PubMed] [Google Scholar]
  34. Li F, Nellåker C, Yolken RH, et al. A systematic evaluation of expression of HERV-W elements; influence of genomic context, viral structure and orientation. BMC Genomics 2011 ; 12 : 22. [CrossRef] [PubMed] [Google Scholar]
  35. Subramanian RP, Wildschutte JH, Russo C, et al. Identification, characterization, and comparative genomic distribution of the HERV-K (HML-2) group of human endogenous retroviruses. Retrovirology 2011 ; 8 : 90. [CrossRef] [PubMed] [Google Scholar]
  36. Macfarlane C, Simmonds P Allelic variation of HERV-K(HML-2) endogenous retroviral elements in human populations. J Mol Evol 2004 ; 59 : 642–656. [Google Scholar]
  37. Wildschutte JH, Ram D, Subramanian R, et al. The distribution of insertionally polymorphic endogenous retroviruses in breast cancer patients and cancer-free controls. Retrovirology 2014 ; 11 : 62. [CrossRef] [PubMed] [Google Scholar]
  38. Garcia-Montojo M, Dominguez-Mozo M, Arias-Leal A, et al. The DNA copy number of human endogenous retrovirus-W (MSRV-type) is increased in multiple sclerosis patients and is influenced by gender and disease severity. PLoS One 2013 ; 8 : e53623. [Google Scholar]
  39. Wildschutte JH, Williams ZH, Montesion M, et al. Discovery of unfixed endogenous retrovirus insertions in diverse human populations. Proc Natl Acad Sci USA 2016 ; 113 : E2326–E2334. [CrossRef] [Google Scholar]
  40. Xing J, Witherspoon DJ, Jorde LB Mobile element biology : new possibilities with high-throughput sequencing. Trends Genet 2013 ; 29 : 280–289. [Google Scholar]
  41. Jern P, Sperber GO, Blomberg J Divergent patterns of recent retroviral integrations in the human and chimpanzee genomes: probable transmissions between other primates and chimpanzees. J Virol 2006 ; 80 : 1367–1375. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.