Free Access
Issue
Med Sci (Paris)
Volume 33, Number 2, Février 2017
Page(s) 159 - 168
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20173302011
Published online 27 February 2017
  1. Beal J, Weiss R, Densmore D, et al. An end-to-end workflow for engineering of biological networks from high-level specifications. ACS Synth Biol 2012 ; 1 : 317–331. [Google Scholar]
  2. Endy D. Foundations for engineering biology. Nature 2005 ; 438 : 449–453. [CrossRef] [PubMed] [Google Scholar]
  3. Saeidi N, Wong CK, Lo TM, et al. Engineering microbes to sense and eradicate Pseudomonas aeruginosa, a human pathogen. Mol Syst Biol 2011 ; 7 : 521. [CrossRef] [PubMed] [Google Scholar]
  4. Lo TM, Tan MH, Hwang IY, Chang MW Designing a synthetic genetic circuit that enables cell density-dependent auto-regulatory lysis for macromolecule release. Chem Eng Sci 2013 ; 103 : 29–35. [Google Scholar]
  5. Weber W, Schoenmakers R, Keller B, et al. A synthetic mammalian gene circuit reveals antituberculosis compounds. Proc Natl Acad Sci USA 2008 ; 105 : 9994–9998. [CrossRef] [Google Scholar]
  6. Ro DK, Paradise EM, Ouellet M, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 2006 ; 440 : 940–943. [CrossRef] [PubMed] [Google Scholar]
  7. Gilad AA, McMahon MT, Walczak P, et al. Artificial reporter gene providing MRI contrast based on proton exchange. Nat Biotechnol 2007 ; 25 : 217–219. [CrossRef] [PubMed] [Google Scholar]
  8. Jaffe EK, Volin M, Bronson-Mullins CR, et al. An artificial gene for human porphobilinogen synthase allows comparison of an allelic variation implicated in susceptibility to lead poisoning. J Biol Chem 2000 ; 275 : 2619–2626. [CrossRef] [PubMed] [Google Scholar]
  9. Xie Z, Wroblewska L, Prochazka L, et al. Multi-input RNAi-based logic circuit for identification of specific cancer cells. Science 2011 ; 333 : 1307–1311. [CrossRef] [PubMed] [Google Scholar]
  10. Miyamoto T, Razavi S, DeRose R, Inoue T Synthesizing biomolecule-based Boolean logic gates. ACS Synth Biol 2013 ; 2 : 72–82. [Google Scholar]
  11. Frezza BM, Cockroft SL, Ghadiri MR Modular multi-level circuits from immobilized DNA-based logic gates. J Am Chem Soc 2007 ; 129 : 14875–14879. [Google Scholar]
  12. Daniel R, Rubens JR, Sarpeshkar R, Lu TK Synthetic analog computation in living cells. Nature 2013 ; 497 : 619–623. [CrossRef] [PubMed] [Google Scholar]
  13. Basu S, Gerchman Y, Collins CH, et al. A synthetic multicellular system for programmed pattern formation. Nature 2005 ; 434 : 1130–1134. [CrossRef] [PubMed] [Google Scholar]
  14. Garaschuk O, Griesbeck O, Konnerth A Troponin C-based biosensors : a new family of genetically encoded indicators for in vivo calcium imaging in the nervous system. Cell Calcium 2007 ; 42 : 351–361. [Google Scholar]
  15. French CE, de Mora K, Joshi N, et al. Synthetic biology and the art of biosensor design. In: Institute of medicine (US) forum on microbial threats. The science and applications of synthetic and systems biology : workshop summary. Washington (DC): National Academies Press (US), 2011 : A5. Available from : https://www.ncbi.nlm.nih.gov/books/NBK84465/. [Google Scholar]
  16. Kemmer C, Fluri DA, Witschi U, et al. A designer network coordinating bovine artificial insemination by ovulation-triggered release of implanted sperms. J Control Release 2011 ; 150 : 23–29. [CrossRef] [PubMed] [Google Scholar]
  17. Rabinovitch-Deere CA, Oliver JWK, Rodriguez GM, Atsumi S Synthetic biology and metabolic engineering approaches to produce biofuels. Chem Rev 2013 ; 113 : 4611–4632. [Google Scholar]
  18. Peralta-Yahya PP, Zhang F, del Cardayre SB, Keasling JD Microbial engineering for the production of advanced biofuels. Nature 2012 ; 488 : 320–328. [CrossRef] [PubMed] [Google Scholar]
  19. Canton B, Labno A, Endy D Refinement and standardization of synthetic biological parts and devices. Nat Biotechnol 2008 ; 26 : 787–793. [CrossRef] [PubMed] [Google Scholar]
  20. Knight T. Idempotent vector design for standard assembly of biobricks. In: MIT artificial intelligence laboratory. MIT Synthetic Biology Working Group, 2003. Available : http://hdl.handle.net/1721.1/21168. [Google Scholar]
  21. Endy D. BioBrick foundation website. http://biobricks.org/ [Google Scholar]
  22. Gardner TS, Cantor CR, Collins JJ Construction of a genetic toggle switch in Escherichia coli. Lett Nat 2000 ; 403 : 339–342. [Google Scholar]
  23. Richard N. Électronique numérique et séquentielle. Collection Sciences Sup. Paris : Dunod, 2002 : 264 p. [Google Scholar]
  24. Moon TS, Lou C, Tamsir A, et al. Genetic programs constructed from layered logic gates in single cells. Nature 2012 ; 7423 : 249–253. [Google Scholar]
  25. Mu M, Wieland M, Fussenegger M Programmable single-cell mammalian biocomputers. Nature 2012 ; 487 : 5–10. [Google Scholar]
  26. Wang B, Kitney RI, Joly N, Buck M Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology. Nat Commun 2011 ; 2 : 508. [Google Scholar]
  27. Gendrault Y, Madec M, Lallement C, et al. Synthetic biology methodology and model refinement based on microelectronic modeling tools and languages. Biotechnol J 2011 ; 6 : 796–806. [CrossRef] [PubMed] [Google Scholar]
  28. Lux MW, Bramlett BW, Ball DA, Peccoud J Genetic design automation : engineering fantasy or scientific renewal? Trends Biotechnol 2012 ; 30 : 120–126. [CrossRef] [PubMed] [Google Scholar]
  29. MacDonald JT, Barnes C, Kitney RI, et al. Computational design approaches and tools for synthetic biology. Integr Biol (Camb) 2011 ; 3 : 97–108. [CrossRef] [PubMed] [Google Scholar]
  30. Hucka M. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 2003 ; 19 : 524–531. [CrossRef] [PubMed] [Google Scholar]
  31. Cooling MT, Rouilly V, Misirli G, et al. Standard virtual biological parts : a repository of modular modeling components for synthetic biology. Bioinformatics 2010 ; 26 : 925–931. [CrossRef] [PubMed] [Google Scholar]
  32. Le Novère N, Bornstein B, Broicher A, et al. BioModels database : a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Res 2006 ; 34 : 689–691. [Google Scholar]
  33. Hoops S, Sahle S, Gauges R, et al. COPASI : a complex pathway simulator. Bioinformatics 2006 ; 22 : 3067–3074. [CrossRef] [PubMed] [Google Scholar]
  34. Bergmann FT, Sauro HM Comparing simulation results of SBML capable simulators. Bioinformatics 2008 ; 24 : 1963–1965. [CrossRef] [PubMed] [Google Scholar]
  35. Czar MJ, Cai Y, Peccoud J Writing DNA with GenoCAD. Nucleic Acids Res 2009 ; 37 : W40–W47. [CrossRef] [PubMed] [Google Scholar]
  36. Goler JA. BioJADE : a design and simulation tool for synthetic biological systems. PhD dissertation. Massachusetts Institute of Technology, 2004. [Google Scholar]
  37. Beal J, Weiss R, Densmore D, et al. TASBE : a tool-chain to accelerate synthetic biological engineering. Proceedings of the 3rd International Workshop on Bio-Design Automation 2011 ; 2 : 19–21. [Google Scholar]
  38. Nielsen AAK, Der BS, Shin J, et al. Genetic circuit design automation. Science 2016 ; 352 : aac7341. [CrossRef] [PubMed] [Google Scholar]
  39. Wang LT, Chang YW, Cheng KTT. Electronic design automation : synthesis, verification, and test. Morgan Kaufmann, 2009 : 972 p. [Google Scholar]
  40. Madec M, Pecheux F, Gendrault Y, et al. GeNeDA : an open-source workflow for the design automation of gene regulatory networks. J Comput Biol 2016 ; 23 : 841–855. [CrossRef] [PubMed] [Google Scholar]
  41. Thomas DE, Moorby PR. The Verilog® hardware description language New York : Springer, 2002 : 386 p. [Google Scholar]
  42. Bhatia S, Densmore D Pigeon : a design visualizer for synthetic biology. ACS Synth Biol 2013 ; 2 : 348–350. [Google Scholar]
  43. Gendrault Y, Madec M, Lallement C, Haiech J Modeling biology with HDL languages : a first step toward a genetic design automation tool inspired from microelectronics. IEEE Trans Biomed Eng 2014 ; 61 : 1231–1240. [Google Scholar]
  44. Rezgui A, Madec M, Lallement C, Haiech J. Integration of SBML models for the description of biological system in a lab-on-chip. 22nd International Conference Mixed Design of Integrated Circuits and Systems (MIXDES), 2015 : 165–170. [Google Scholar]
  45. Engvall E, Perlmann P Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G. Immunochemistry 1971 ; 8 : 871–874. [CrossRef] [PubMed] [Google Scholar]
  46. Guiton S, Rezgui A, Madec M, et al. Modeling and simulation of a Lab-On-Chip for micropollutants detection. Proceedings of the 21st International Conference Mixed Design of Integrated Circuits and Systems (MIXDES), 2014 : 256–261. [Google Scholar]
  47. Tamsir A, Tabor JJ, Voigt CA Robust multicellular computing using genetically encoded NOR gates and chemical wires. Nature 2011 ; 469 : 212–215. [CrossRef] [PubMed] [Google Scholar]
  48. Balagaddé FK, Song H, Ozaki J, et al. A synthetic Escherichia coli predator-prey ecosystem. Mol Syst Biol 2008 ; 4 : 187. [PubMed] [Google Scholar]
  49. Krencker JC, Kammerer JB, Hervé Y, Hébrard L. Direct electro-thermal simulation of integrated circuits using standard CAD tools. Thermal Investigations of ICs and Systems (Therminic), 16th International Workshop, 2010. [Google Scholar]
  50. Rosati E, Madec M, Kammerer JB, et al. Verilog-A compact space-dependent model for biology. Mixed design of integrated circuits and systems (MIXDES), 22nd International Conference, 2015. [Google Scholar]
  51. Képès F. Biologie synthétique et intégrative. Med Sci (Paris) 2009 ; 25 (hs2) : 39–42. [PubMed] [Google Scholar]
  52. Haiech J. Une vision de l’évolution de la biologie par un biologiste. D’une biologie descriptive vers une biologie prédictive. Med Sci (Paris) 2013 ; 29 (hs2) : 43–46. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  53. Mazier D, Prix Thellier M Nobel de médecine, Youyou Tu, de Mao Zedong au Prix Nobel. Mec Sci (Paris) 2015 ; 2016 ; 32 : 106–109. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.