Free Access
Med Sci (Paris)
Volume 33, Number 1, Janvier 2017
Matériaux pour la médecine de demain
Page(s) 18 - 24
Section M/S Revues
Published online 25 January 2017
  1. Yuh WTC, Engelken JD, Muhonen MG, et al. Experience with high-dose gadolinium mr imaging in the evaluation of brain metastases. Am J Neuroradiol 1992 ; 13 : 335–345. [Google Scholar]
  2. Hermann P, Kotek J, Kubícek V, Lukes I. Gadolinium(III) complexes as MRI contrast agents: ligand design and properties of the complexes. Dalton Trans 2008 ; 23 : 3027–3047. [Google Scholar]
  3. Bonnet CS, Toth E. Smart contrast agents for magnetic resonance imaging. Chimia (Aarau) 2016 ; 70 : 102–108. [CrossRef] [PubMed] [Google Scholar]
  4. Burke C, Alexander Grant L, Goh V, Griffin N. The role of hepatocyte-specific contrast agents in hepatobiliary magnetic resonance imaging. Semin Ultrasound CT MRI 2013 ; 34 : 44–53. [CrossRef] [Google Scholar]
  5. Boldt DH. New perspectives on iron: an introduction. Am J Med Sci 1999 ; 318 : 207–212. [Google Scholar]
  6. Bashir MR, Bhatti L, Marin D, Nelson RC. Emerging applications for ferumoxytol as a contrast agent in MRI. J Magn Reson Imaging 2015 ; 41 : 884–898. [CrossRef] [PubMed] [Google Scholar]
  7. Kolosnjaj-Tabi J, Wilhelm C, Clement O, Gazeau F. Cell labeling with magnetic nanoparticles: opportunity for magnetic cell imaging and cell manipulation. J Nanobiotechnology 2013 ; 11 (suppl 1) : S7. [Google Scholar]
  8. Kamaly N, Kalber T, Ahmad A, et al. Bimodal paramagnetic and fluorescent liposomes for cellular and tumor magnetic resonance imaging. Bioconjugate Chem 2008 ; 19 : 118–129. [CrossRef] [Google Scholar]
  9. Martina MS, Fortin JP, Menager C, et al. Generation of superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging. J Am Chem Soc 2005 ; 127 : 10676–10685. [Google Scholar]
  10. Pais A, Gunanathan C, Margalit R, et al. In vivo magnetic resonance imaging of the estrogen receptor in an orthotopic model of human breast cancer. Cancer Res 2011 ; 71 : 7387–7397. [Google Scholar]
  11. Cosco D, Fattal E, Fresta M, Tsapis N. Perfluorocarbon-loaded micro and nanosystems for medical imaging: a state of the art. J Fluorine Chem 2015 ; 171 : 18–26. [CrossRef] [Google Scholar]
  12. Schutt EG, Klein DH, Mattrey RM, Riess JG. Injectable microbubbles as contrast agents for diagnostic ultrasound imaging: the key role of perfluorochemicals. Angew Chem Int Ed Engl 2003 ; 42 : 3218–3235. [CrossRef] [PubMed] [Google Scholar]
  13. Tranquart F, Correas JM, Bouakaz A (eds). Échographie de contraste. Paris : Springer-Verlag, 2007 : 318 p. [Google Scholar]
  14. Gramiak R, Shah PM. Echocardiography of the aortic root. Invest Radiol 1968 ; 3 : 356–366. [Google Scholar]
  15. Pisani E. Conception et caractérisation de capsules polymériques comme produits de contraste pour l’imagerie médicale Thèse de doctorat en Pharmacie : Faculté de Pharmacie, Châtenay-Malabry, Université Paris-Sud, 2006. [Google Scholar]
  16. Lindner JR. Microbubbles in medical imaging: current applications and future directions. Nat Rev Drug Discov 2004 ; 3 : 527–533. [CrossRef] [PubMed] [Google Scholar]
  17. Brennen CE. Cavitation and bubble dynamics New York : Oxford University Press, 1995, 282 p. [Google Scholar]
  18. Ahmadi F, McLoughlin IV, Chauhan S, Ter-Haar G. Bio-effects and safety of low-intensity, low-frequency ultrasonic exposure. Prog Biophys Mol Biol 2012 ; 108 : 119–138. [Google Scholar]
  19. Guibal A, Taillade L, Mule S, et al. Noninvasive contrast-enhanced US quantitative assessment of tumor microcirculation in a murine model: effect of discontinuing anti-VEGF therapy. Radiology 2010 ; 254 : 420–429. [CrossRef] [PubMed] [Google Scholar]
  20. Lang RM, Mor-Avi V. Clinical utility of contrast-enhanced echocardiography. Clin Cardiol 2006 ; 29 : I15–I25. [CrossRef] [PubMed] [Google Scholar]
  21. Quaia E. Assessment of tissue perfusion by contrast-enhanced ultrasound. Eur Radiol 2011 ; 21 : 604–615. [CrossRef] [PubMed] [Google Scholar]
  22. Klibanov AL. Ultrasound contrast materials in cardiovascular medicine: from perfusion assessment to molecular imaging. J Cardiovasc Transl Res 2013 ; 6 : 729–739. [CrossRef] [PubMed] [Google Scholar]
  23. Maeda H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv Drug Deliv Rev 2015 ; 91 : 3–6. [CrossRef] [PubMed] [Google Scholar]
  24. Matsunaga TO, Sheeran PS, Luois S, et al. Phase-change nanoparticles using highly volatile perfluorocarbons: toward a platform for extravascular ultrasound imaging. Theranostics 2012 ; 2 : 1185–1198. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.