Free Access
Med Sci (Paris)
Volume 33, Number 1, Janvier 2017
Matériaux pour la médecine de demain
Page(s) 11 - 17
Section M/S Revues
Published online 25 January 2017
  1. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Rel 2001 ; 70 : 1–20. [CrossRef] [PubMed] [Google Scholar]
  2. Nicolas J, Mura S, Brambilla D, et al. Design and functionalization strategies for biodegradable/biocompatible polymer-based nanoparticles applied in targeted drug delivery. Chem Soc Rev 2013 ; 42 : 1147–1235. [CrossRef] [PubMed] [Google Scholar]
  3. Nicolas J, Couvreur P. Synthesis of poly(alkyl cyanoacrylate)-based colloidal nanomedicines. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2009 ; 1 : 111–127. [Google Scholar]
  4. Vauthier C, Dubernet C, Fattal E, et al. Poly(alkylcyanoacrylates) as biodegradable materials for biomedical applications. Adv Drug Deliv Rev 2003 ; 55 : 519–548. [CrossRef] [PubMed] [Google Scholar]
  5. Bae Y, Kataoka K. Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers. Adv Drug Deliv Rev 2009 ; 61 : 768–784. [CrossRef] [PubMed] [Google Scholar]
  6. Chiannilkulchai N, Ammoury N, Caillou B, et al. Hepatic tissue distribution of doxorubicin-loaded nanoparticles after i.v. administration in reticulosarcoma M 5076 metastasis-bearing mice. Cancer Chemother Pharmacol 1990 ; 26 : 122–126. [CrossRef] [PubMed] [Google Scholar]
  7. Krause HJ, Schwarz A, Rohdewald P. Polylactic acid nanoparticles, a colloidal drug delivery system for lipophilic drugs. Int J Pharm 1985 ; 27 : 145–155. [Google Scholar]
  8. Verrecchia T, Spenlehauer G, Bazile DV, et al. Proceedings of the third european symposium on controlled drug deliverynon-stealth (poly[lactic acid/albumin]) and stealth (poly[lactic acid-polyethylene glycol]) nanoparticles as injectable drug carriers. J Control Rel 1995 ; 36 : 49–61. [CrossRef] [Google Scholar]
  9. Chiannilkulchai N, Driouich Z, Benoit JP, et al. Doxorubicin-loaded nanoparticles: increased efficiency in murine hepatic metastases. Sel Cancer Ther 1989 ; 5 : 1–11. [CrossRef] [PubMed] [Google Scholar]
  10. Kattan J, Droz JP, Couvreur P, et al. Phase I clinical trial and pharmacokinetic evaluation of doxorubicin carried by polyisohexylcyanoacrylate nanoparticles. Invest New Drugs 1992 ; 10 : 191–199. [CrossRef] [PubMed] [Google Scholar]
  11. Veronese FM, Pasut G. PEGylation, successful approach to drug delivery. Drug Discov Today 2005 ; 10 : 1451–1458. [CrossRef] [PubMed] [Google Scholar]
  12. Iyer AK, Khaled G, Fang J, Maeda H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 2006 ; 11 : 812–818. [CrossRef] [PubMed] [Google Scholar]
  13. Bazile D, Prud’homme C, Bassoullet MT, et al. Stealth Me.PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system. J Pharm Sci 1995 ; 84 : 493–498. [CrossRef] [PubMed] [Google Scholar]
  14. Gref R, Minamitake Y, Peracchia MT, et al. Biodegradable long-circulating polymeric nanospheres. Science 1994 ; 263 : 1600–1603. [Google Scholar]
  15. Gref R, Luck M, Quellec P, et al. Stealth corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B Biointerfaces 2000 ; 18 : 301–313. [CrossRef] [PubMed] [Google Scholar]
  16. Peracchia MT, Desmaële D, Couvreur P, d’Angelo J. Synthesis of a novel Poly(MePEG cyanoacrylate-co-alkyl cyanoacrylate) amphiphilic copolymer for nanoparticle technology. Macromolecules 1997 ; 30 : 846–851. [Google Scholar]
  17. Accardo A, Aloj L, Aurilio M, et al. Receptor binding peptides for target-selective delivery of nanoparticles encapsulated drugs. Int J Nanomedicine 2014 ; 9 : 1537–1557. [Google Scholar]
  18. Anselmo AC, Mitragotri S. Nanoparticles in the clinic. BioTM 2016 ; 1 : 10–29. [Google Scholar]
  19. Wang M, Thanou M. Targeting nanoparticles to cancer. Pharmacol Res 2010 ; 62 : 90–99. [CrossRef] [PubMed] [Google Scholar]
  20. Tsai HC, Chang WH, Lo CL, et al. Graft and diblock copolymer multifunctional micelles for cancer chemotherapy and imaging. Biomaterials 2010 ; 31 : 2293–2301. [CrossRef] [PubMed] [Google Scholar]
  21. Mackiewicz N, Nicolas J, Handké N, et al. Precise engineering of multifunctional PEGylated polyester nanoparticles for cancer cell targeting and imaging. Chem Mater 2014 ; 26 : 1834–1847. [Google Scholar]
  22. Yasugi K, Nakamura T, Nagasaki Y, et al. Sugar-installed polymer micelles: synthesis and micellization of Poly(ethylene glycol)-Poly(d, l-lactide) block copolymers having sugar groups at the PEG chain end. Macromolecules 1999 ; 32 : 8024–8032. [Google Scholar]
  23. Nagasaki Y, Yasugi K, Yamamoto Y, et al. Sugar-installed block copolymer micelles: their preparation and specific interaction with lectin molecules. Biomacromolecules 2001 ; 2 : 1067–1070. [CrossRef] [PubMed] [Google Scholar]
  24. Yu DH, Lu Q, Xie J, et al. Peptide-conjugated biodegradable nanoparticles as a carrier to target paclitaxel to tumor neovasculature. Biomaterials 2010 ; 31 : 2278–2292. [CrossRef] [PubMed] [Google Scholar]
  25. Danhier F, Vroman B, Lecouturier N, et al. Targeting of tumor endothelium by RGD-grafted PLGA-nanoparticles loaded with Paclitaxel. J Control Rel 2009 ; 140 : 166–173. [CrossRef] [Google Scholar]
  26. Farokhzad OC, Cheng J, Teply BA, et al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci USA 2006 ; 103 : 6315–6320. [CrossRef] [Google Scholar]
  27. Von Hoff DD, Mita MM, Ramanathan RK, et al. Phase I study of PSMA-targeted docetaxel-containing nanoparticle BIND-014 in patients with advanced solid tumors. Clin Cancer Res 2016 ; 22 : 3157–3163. [CrossRef] [PubMed] [Google Scholar]
  28. Cabral H, Nishiyama N, Kataoka K. Supramolecular nanodevices: from design validation to theranostic nanomedicine. Acc Chem Res 2011 ; 44 : 999–1008. [CrossRef] [PubMed] [Google Scholar]
  29. Stella B, Marsaud V, Arpicco S, et al. Biological characterization of folic acid-conjugated poly(H2NPEGCA-co-HDCA) nanoparticles in cellular models. J Drug Targeting 2007 ; 15 : 146–153. [CrossRef] [Google Scholar]
  30. Le Droumaguet B, Nicolas J, Brambilla D, et al. Versatile and efficient targeting from a single nanoparticulate platform: application to cancer and Alzheimer’s disease. ACS Nano 2012 ; 6 : 5866–5879. [Google Scholar]
  31. Torrice M. Does nanomedicine have a delivery problem? ACS Cent Sci 2016 ; 2 : 434–437. [CrossRef] [PubMed] [Google Scholar]
  32. Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery systems. Nat Mater 2013 ; 12 : 991–1003. [CrossRef] [PubMed] [Google Scholar]
  33. Wei H, Cheng SX, Zhang XZ, Zhuo RX. Thermo-sensitive polymeric micelles based on poly(N-isopropylacrylamide) as drug carriers. Prog Polym Sci 2009 ; 34 : 893–910. [Google Scholar]
  34. Li W, Huang L, Ying X, et al. Antitumor drug delivery modulated by a polymeric micelle with an upper critical solution temperature. Angew Chem Int Ed 2015 ; 54 : 3126–3131. [CrossRef] [Google Scholar]
  35. Reddy LH, Arias JL, Nicolas J, Couvreur P. Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 2012 ; 112 : 5818–5878. [CrossRef] [PubMed] [Google Scholar]
  36. Ulbrich K, Holá K, Šubr V, et al. Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem Rev 2016 ; 116 : 5338–5431. [CrossRef] [PubMed] [Google Scholar]
  37. Hua MY, Liu HL, Yang HW, et al. The effectiveness of a magnetic nanoparticle-based delivery system for BCNU in the treatment of gliomas. Biomaterials 2011 ; 32 : 516–527. [CrossRef] [PubMed] [Google Scholar]
  38. Hervault A, Thanh NTK. Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. Nanoscale 2014 ; 6 : 11553–11573. [CrossRef] [PubMed] [Google Scholar]
  39. Delplace V, Couvreur P, Nicolas J. Recent trends in the design of anticancer polymer prodrug nanocarriers. Polym Chem 2014 ; 5 : 1529–1544. [Google Scholar]
  40. Bensaid F, Thillaye du Boullay O, Amgoune A, et al. Y-shaped mPEG-PLA cabazitaxel conjugates: well-controlled synthesis by organocatalytic approach and self-assembly into interface drug-loaded core–corona nanoparticles. Biomacromolecules 2013 ; 14 : 1189–1198. [CrossRef] [PubMed] [Google Scholar]
  41. Bertin PA, Smith D, Nguyen ST. High-density doxorubicin-conjugated polymeric nanoparticles via ring-opening metathesis polymerization. Chem Commun (Camb) 2005 ; 30 : 3793–3795. [Google Scholar]
  42. Nicolas J. Drug-initiated synthesis of polymer prodrugs: combining simplicity and efficacy in drug delivery. Chem Mater 2016 ; 28 : 1591–1606. [CrossRef] [PubMed] [Google Scholar]
  43. Kopecek J, Kopecková P. HPMA copolymers: origins, early developments, present, and future. Adv Drug Delivery Rev 2010 ; 62 : 122–149. [CrossRef] [Google Scholar]
  44. Harrisson S, Nicolas J, Maksimenko A, et al. Nanoparticles with in vivo anticancer activity from polymer prodrug amphiphiles prepared by living radical polymerization. Angew Chem Int Ed 2013 ; 52 : 1678–1682. [CrossRef] [Google Scholar]
  45. Maksimenko A, Bui DT, Desmaële D, et al. Significant tumor growth inhibition from naturally occurring lipid-containing polymer prodrug nanoparticles obtained by the drug-initiated method. Chem Mater 2014 ; 26 : 3606–3609. [Google Scholar]
  46. Tong R, Cheng J. Paclitaxel-initiated, controlled polymerization of lactide for the formulation of polymeric nanoparticulate delivery vehicles. Angew Chem Int Ed 2008 ; 47 : 4830–4834. [CrossRef] [Google Scholar]
  47. Tong R, Cheng J. Controlled synthesis of camptothecin-polylactide conjugates and nanoconjugates. Bioconjugate Chem 2009 ; 21 : 111–121. [CrossRef] [Google Scholar]
  48. Chan JM, Zhang L, Tong R, et al. Spatiotemporal controlled delivery of nanoparticles to injured vasculature. Proc Natl Acad Sci USA 2010 ; 107 : 2213–2218. [CrossRef] [Google Scholar]
  49. Williams CC, Thang SH, Hantke T, et al. RAFT-derived polymer-drug conjugates: poly(hydroxypropyl methacrylamide) (HPMA)-7-Ethyl-10-hydroxycamptothecin (SN-38) conjugates. ChemMedChem 2012 ; 7 : 281–291. [CrossRef] [PubMed] [Google Scholar]
  50. Tsapis N. Agents de contraste pour l’imagerie médicale : les exemples de l’IRM et l’ultrasonographie. Med Sci (Paris) 2017 ; 33 : 18–24. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.