Accès gratuit
Numéro |
Med Sci (Paris)
Volume 33, Numéro 1, Janvier 2017
Matériaux pour la médecine de demain
|
|
---|---|---|
Page(s) | 11 - 17 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/20173301003 | |
Publié en ligne | 25 janvier 2017 |
- Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Rel 2001 ; 70 : 1–20. [CrossRef] [PubMed] [Google Scholar]
- Nicolas J, Mura S, Brambilla D, et al. Design and functionalization strategies for biodegradable/biocompatible polymer-based nanoparticles applied in targeted drug delivery. Chem Soc Rev 2013 ; 42 : 1147–1235. [CrossRef] [PubMed] [Google Scholar]
- Nicolas J, Couvreur P. Synthesis of poly(alkyl cyanoacrylate)-based colloidal nanomedicines. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2009 ; 1 : 111–127. [Google Scholar]
- Vauthier C, Dubernet C, Fattal E, et al. Poly(alkylcyanoacrylates) as biodegradable materials for biomedical applications. Adv Drug Deliv Rev 2003 ; 55 : 519–548. [CrossRef] [PubMed] [Google Scholar]
- Bae Y, Kataoka K. Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers. Adv Drug Deliv Rev 2009 ; 61 : 768–784. [CrossRef] [PubMed] [Google Scholar]
- Chiannilkulchai N, Ammoury N, Caillou B, et al. Hepatic tissue distribution of doxorubicin-loaded nanoparticles after i.v. administration in reticulosarcoma M 5076 metastasis-bearing mice. Cancer Chemother Pharmacol 1990 ; 26 : 122–126. [CrossRef] [PubMed] [Google Scholar]
- Krause HJ, Schwarz A, Rohdewald P. Polylactic acid nanoparticles, a colloidal drug delivery system for lipophilic drugs. Int J Pharm 1985 ; 27 : 145–155. [Google Scholar]
- Verrecchia T, Spenlehauer G, Bazile DV, et al. Proceedings of the third european symposium on controlled drug deliverynon-stealth (poly[lactic acid/albumin]) and stealth (poly[lactic acid-polyethylene glycol]) nanoparticles as injectable drug carriers. J Control Rel 1995 ; 36 : 49–61. [CrossRef] [Google Scholar]
- Chiannilkulchai N, Driouich Z, Benoit JP, et al. Doxorubicin-loaded nanoparticles: increased efficiency in murine hepatic metastases. Sel Cancer Ther 1989 ; 5 : 1–11. [CrossRef] [PubMed] [Google Scholar]
- Kattan J, Droz JP, Couvreur P, et al. Phase I clinical trial and pharmacokinetic evaluation of doxorubicin carried by polyisohexylcyanoacrylate nanoparticles. Invest New Drugs 1992 ; 10 : 191–199. [CrossRef] [PubMed] [Google Scholar]
- Veronese FM, Pasut G. PEGylation, successful approach to drug delivery. Drug Discov Today 2005 ; 10 : 1451–1458. [CrossRef] [PubMed] [Google Scholar]
- Iyer AK, Khaled G, Fang J, Maeda H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 2006 ; 11 : 812–818. [CrossRef] [PubMed] [Google Scholar]
- Bazile D, Prud’homme C, Bassoullet MT, et al. Stealth Me.PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system. J Pharm Sci 1995 ; 84 : 493–498. [CrossRef] [PubMed] [Google Scholar]
- Gref R, Minamitake Y, Peracchia MT, et al. Biodegradable long-circulating polymeric nanospheres. Science 1994 ; 263 : 1600–1603. [Google Scholar]
- Gref R, Luck M, Quellec P, et al. Stealth corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B Biointerfaces 2000 ; 18 : 301–313. [CrossRef] [PubMed] [Google Scholar]
- Peracchia MT, Desmaële D, Couvreur P, d’Angelo J. Synthesis of a novel Poly(MePEG cyanoacrylate-co-alkyl cyanoacrylate) amphiphilic copolymer for nanoparticle technology. Macromolecules 1997 ; 30 : 846–851. [Google Scholar]
- Accardo A, Aloj L, Aurilio M, et al. Receptor binding peptides for target-selective delivery of nanoparticles encapsulated drugs. Int J Nanomedicine 2014 ; 9 : 1537–1557. [Google Scholar]
- Anselmo AC, Mitragotri S. Nanoparticles in the clinic. BioTM 2016 ; 1 : 10–29. [Google Scholar]
- Wang M, Thanou M. Targeting nanoparticles to cancer. Pharmacol Res 2010 ; 62 : 90–99. [CrossRef] [PubMed] [Google Scholar]
- Tsai HC, Chang WH, Lo CL, et al. Graft and diblock copolymer multifunctional micelles for cancer chemotherapy and imaging. Biomaterials 2010 ; 31 : 2293–2301. [CrossRef] [PubMed] [Google Scholar]
- Mackiewicz N, Nicolas J, Handké N, et al. Precise engineering of multifunctional PEGylated polyester nanoparticles for cancer cell targeting and imaging. Chem Mater 2014 ; 26 : 1834–1847. [Google Scholar]
- Yasugi K, Nakamura T, Nagasaki Y, et al. Sugar-installed polymer micelles: synthesis and micellization of Poly(ethylene glycol)-Poly(d, l-lactide) block copolymers having sugar groups at the PEG chain end. Macromolecules 1999 ; 32 : 8024–8032. [Google Scholar]
- Nagasaki Y, Yasugi K, Yamamoto Y, et al. Sugar-installed block copolymer micelles: their preparation and specific interaction with lectin molecules. Biomacromolecules 2001 ; 2 : 1067–1070. [CrossRef] [PubMed] [Google Scholar]
- Yu DH, Lu Q, Xie J, et al. Peptide-conjugated biodegradable nanoparticles as a carrier to target paclitaxel to tumor neovasculature. Biomaterials 2010 ; 31 : 2278–2292. [CrossRef] [PubMed] [Google Scholar]
- Danhier F, Vroman B, Lecouturier N, et al. Targeting of tumor endothelium by RGD-grafted PLGA-nanoparticles loaded with Paclitaxel. J Control Rel 2009 ; 140 : 166–173. [CrossRef] [Google Scholar]
- Farokhzad OC, Cheng J, Teply BA, et al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci USA 2006 ; 103 : 6315–6320. [CrossRef] [Google Scholar]
- Von Hoff DD, Mita MM, Ramanathan RK, et al. Phase I study of PSMA-targeted docetaxel-containing nanoparticle BIND-014 in patients with advanced solid tumors. Clin Cancer Res 2016 ; 22 : 3157–3163. [CrossRef] [PubMed] [Google Scholar]
- Cabral H, Nishiyama N, Kataoka K. Supramolecular nanodevices: from design validation to theranostic nanomedicine. Acc Chem Res 2011 ; 44 : 999–1008. [CrossRef] [PubMed] [Google Scholar]
- Stella B, Marsaud V, Arpicco S, et al. Biological characterization of folic acid-conjugated poly(H2NPEGCA-co-HDCA) nanoparticles in cellular models. J Drug Targeting 2007 ; 15 : 146–153. [CrossRef] [Google Scholar]
- Le Droumaguet B, Nicolas J, Brambilla D, et al. Versatile and efficient targeting from a single nanoparticulate platform: application to cancer and Alzheimer’s disease. ACS Nano 2012 ; 6 : 5866–5879. [Google Scholar]
- Torrice M. Does nanomedicine have a delivery problem? ACS Cent Sci 2016 ; 2 : 434–437. [CrossRef] [PubMed] [Google Scholar]
- Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery systems. Nat Mater 2013 ; 12 : 991–1003. [CrossRef] [PubMed] [Google Scholar]
- Wei H, Cheng SX, Zhang XZ, Zhuo RX. Thermo-sensitive polymeric micelles based on poly(N-isopropylacrylamide) as drug carriers. Prog Polym Sci 2009 ; 34 : 893–910. [Google Scholar]
- Li W, Huang L, Ying X, et al. Antitumor drug delivery modulated by a polymeric micelle with an upper critical solution temperature. Angew Chem Int Ed 2015 ; 54 : 3126–3131. [CrossRef] [Google Scholar]
- Reddy LH, Arias JL, Nicolas J, Couvreur P. Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 2012 ; 112 : 5818–5878. [CrossRef] [PubMed] [Google Scholar]
- Ulbrich K, Holá K, Šubr V, et al. Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem Rev 2016 ; 116 : 5338–5431. [CrossRef] [PubMed] [Google Scholar]
- Hua MY, Liu HL, Yang HW, et al. The effectiveness of a magnetic nanoparticle-based delivery system for BCNU in the treatment of gliomas. Biomaterials 2011 ; 32 : 516–527. [CrossRef] [PubMed] [Google Scholar]
- Hervault A, Thanh NTK. Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. Nanoscale 2014 ; 6 : 11553–11573. [CrossRef] [PubMed] [Google Scholar]
- Delplace V, Couvreur P, Nicolas J. Recent trends in the design of anticancer polymer prodrug nanocarriers. Polym Chem 2014 ; 5 : 1529–1544. [Google Scholar]
- Bensaid F, Thillaye du Boullay O, Amgoune A, et al. Y-shaped mPEG-PLA cabazitaxel conjugates: well-controlled synthesis by organocatalytic approach and self-assembly into interface drug-loaded core–corona nanoparticles. Biomacromolecules 2013 ; 14 : 1189–1198. [CrossRef] [PubMed] [Google Scholar]
- Bertin PA, Smith D, Nguyen ST. High-density doxorubicin-conjugated polymeric nanoparticles via ring-opening metathesis polymerization. Chem Commun (Camb) 2005 ; 30 : 3793–3795. [Google Scholar]
- Nicolas J. Drug-initiated synthesis of polymer prodrugs: combining simplicity and efficacy in drug delivery. Chem Mater 2016 ; 28 : 1591–1606. [CrossRef] [PubMed] [Google Scholar]
- Kopecek J, Kopecková P. HPMA copolymers: origins, early developments, present, and future. Adv Drug Delivery Rev 2010 ; 62 : 122–149. [CrossRef] [Google Scholar]
- Harrisson S, Nicolas J, Maksimenko A, et al. Nanoparticles with in vivo anticancer activity from polymer prodrug amphiphiles prepared by living radical polymerization. Angew Chem Int Ed 2013 ; 52 : 1678–1682. [CrossRef] [Google Scholar]
- Maksimenko A, Bui DT, Desmaële D, et al. Significant tumor growth inhibition from naturally occurring lipid-containing polymer prodrug nanoparticles obtained by the drug-initiated method. Chem Mater 2014 ; 26 : 3606–3609. [Google Scholar]
- Tong R, Cheng J. Paclitaxel-initiated, controlled polymerization of lactide for the formulation of polymeric nanoparticulate delivery vehicles. Angew Chem Int Ed 2008 ; 47 : 4830–4834. [CrossRef] [Google Scholar]
- Tong R, Cheng J. Controlled synthesis of camptothecin-polylactide conjugates and nanoconjugates. Bioconjugate Chem 2009 ; 21 : 111–121. [CrossRef] [Google Scholar]
- Chan JM, Zhang L, Tong R, et al. Spatiotemporal controlled delivery of nanoparticles to injured vasculature. Proc Natl Acad Sci USA 2010 ; 107 : 2213–2218. [CrossRef] [Google Scholar]
- Williams CC, Thang SH, Hantke T, et al. RAFT-derived polymer-drug conjugates: poly(hydroxypropyl methacrylamide) (HPMA)-7-Ethyl-10-hydroxycamptothecin (SN-38) conjugates. ChemMedChem 2012 ; 7 : 281–291. [CrossRef] [PubMed] [Google Scholar]
- Tsapis N. Agents de contraste pour l’imagerie médicale : les exemples de l’IRM et l’ultrasonographie. Med Sci (Paris) 2017 ; 33 : 18–24. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.