Accès gratuit
Numéro |
Med Sci (Paris)
Volume 33, Numéro 1, Janvier 2017
Matériaux pour la médecine de demain
|
|
---|---|---|
Page(s) | 18 - 24 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/20173301004 | |
Publié en ligne | 25 janvier 2017 |
- Yuh WTC, Engelken JD, Muhonen MG, et al. Experience with high-dose gadolinium mr imaging in the evaluation of brain metastases. Am J Neuroradiol 1992 ; 13 : 335–345. [Google Scholar]
- Hermann P, Kotek J, Kubícek V, Lukes I. Gadolinium(III) complexes as MRI contrast agents: ligand design and properties of the complexes. Dalton Trans 2008 ; 23 : 3027–3047. [Google Scholar]
- Bonnet CS, Toth E. Smart contrast agents for magnetic resonance imaging. Chimia (Aarau) 2016 ; 70 : 102–108. [CrossRef] [PubMed] [Google Scholar]
- Burke C, Alexander Grant L, Goh V, Griffin N. The role of hepatocyte-specific contrast agents in hepatobiliary magnetic resonance imaging. Semin Ultrasound CT MRI 2013 ; 34 : 44–53. [CrossRef] [Google Scholar]
- Boldt DH. New perspectives on iron: an introduction. Am J Med Sci 1999 ; 318 : 207–212. [Google Scholar]
- Bashir MR, Bhatti L, Marin D, Nelson RC. Emerging applications for ferumoxytol as a contrast agent in MRI. J Magn Reson Imaging 2015 ; 41 : 884–898. [CrossRef] [PubMed] [Google Scholar]
- Kolosnjaj-Tabi J, Wilhelm C, Clement O, Gazeau F. Cell labeling with magnetic nanoparticles: opportunity for magnetic cell imaging and cell manipulation. J Nanobiotechnology 2013 ; 11 (suppl 1) : S7. [Google Scholar]
- Kamaly N, Kalber T, Ahmad A, et al. Bimodal paramagnetic and fluorescent liposomes for cellular and tumor magnetic resonance imaging. Bioconjugate Chem 2008 ; 19 : 118–129. [CrossRef] [Google Scholar]
- Martina MS, Fortin JP, Menager C, et al. Generation of superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging. J Am Chem Soc 2005 ; 127 : 10676–10685. [Google Scholar]
- Pais A, Gunanathan C, Margalit R, et al. In vivo magnetic resonance imaging of the estrogen receptor in an orthotopic model of human breast cancer. Cancer Res 2011 ; 71 : 7387–7397. [Google Scholar]
- Cosco D, Fattal E, Fresta M, Tsapis N. Perfluorocarbon-loaded micro and nanosystems for medical imaging: a state of the art. J Fluorine Chem 2015 ; 171 : 18–26. [CrossRef] [Google Scholar]
- Schutt EG, Klein DH, Mattrey RM, Riess JG. Injectable microbubbles as contrast agents for diagnostic ultrasound imaging: the key role of perfluorochemicals. Angew Chem Int Ed Engl 2003 ; 42 : 3218–3235. [CrossRef] [PubMed] [Google Scholar]
- Tranquart F, Correas JM, Bouakaz A (eds). Échographie de contraste. Paris : Springer-Verlag, 2007 : 318 p. [Google Scholar]
- Gramiak R, Shah PM. Echocardiography of the aortic root. Invest Radiol 1968 ; 3 : 356–366. [Google Scholar]
- Pisani E. Conception et caractérisation de capsules polymériques comme produits de contraste pour l’imagerie médicale Thèse de doctorat en Pharmacie : Faculté de Pharmacie, Châtenay-Malabry, Université Paris-Sud, 2006. [Google Scholar]
- Lindner JR. Microbubbles in medical imaging: current applications and future directions. Nat Rev Drug Discov 2004 ; 3 : 527–533. [CrossRef] [PubMed] [Google Scholar]
- Brennen CE. Cavitation and bubble dynamics New York : Oxford University Press, 1995, 282 p. [Google Scholar]
- Ahmadi F, McLoughlin IV, Chauhan S, Ter-Haar G. Bio-effects and safety of low-intensity, low-frequency ultrasonic exposure. Prog Biophys Mol Biol 2012 ; 108 : 119–138. [Google Scholar]
- Guibal A, Taillade L, Mule S, et al. Noninvasive contrast-enhanced US quantitative assessment of tumor microcirculation in a murine model: effect of discontinuing anti-VEGF therapy. Radiology 2010 ; 254 : 420–429. [CrossRef] [PubMed] [Google Scholar]
- Lang RM, Mor-Avi V. Clinical utility of contrast-enhanced echocardiography. Clin Cardiol 2006 ; 29 : I15–I25. [CrossRef] [PubMed] [Google Scholar]
- Quaia E. Assessment of tissue perfusion by contrast-enhanced ultrasound. Eur Radiol 2011 ; 21 : 604–615. [CrossRef] [PubMed] [Google Scholar]
- Klibanov AL. Ultrasound contrast materials in cardiovascular medicine: from perfusion assessment to molecular imaging. J Cardiovasc Transl Res 2013 ; 6 : 729–739. [CrossRef] [PubMed] [Google Scholar]
- Maeda H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv Drug Deliv Rev 2015 ; 91 : 3–6. [CrossRef] [PubMed] [Google Scholar]
- Matsunaga TO, Sheeran PS, Luois S, et al. Phase-change nanoparticles using highly volatile perfluorocarbons: toward a platform for extravascular ultrasound imaging. Theranostics 2012 ; 2 : 1185–1198. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.