Free Access
Med Sci (Paris)
Volume 33, Number 1, Janvier 2017
Matériaux pour la médecine de demain
Page(s) 25 - 31
Section M/S Revues
Published online 25 January 2017
  1. Katsumori T, Kasahara T. The size of gelatin sponge particles: differences with preparation method. Cardiovasc Intervent Radiol 2006 ; 29 : 1077–1083. [CrossRef] [PubMed] [Google Scholar]
  2. Abada HT, Golzarian J. Gelatine sponge particles: handling characteristics for endovascular use. Tech Vasc Interv Radiol 2007 ; 10 : 257–260. [CrossRef] [PubMed] [Google Scholar]
  3. Laurent A, Wassef M, Saint Maurice JP, et al. Arterial distribution of calibrated tris-acryl gelatin and polyvinyl alcohol microspheres in a sheep kidney model. Invest Radiol 2006 ; 41 : 8–14. [Google Scholar]
  4. Forsberg JO. Transient blood flow reduction induced by intra-arterial injection of degradable starch microspheres. Experiments on rats. Acta Chir Scand 1978 ; 144 : 275–281. [Google Scholar]
  5. Wasser K, Giebel F, Fischbach R, et al. Transarterial chemoembolization of liver metastases of colorectal carcinoma using degradable starch microspheres (Spherex®): personal investigations and review of the literature. Radiology 2005 ; 45 : 633–643. [EDP Sciences] [Google Scholar]
  6. Owen RJ, Nation PN, Polakowski R, et al. A preclinical study of the safety and efficacy of Occlusin 500 artificial embolization device in sheep. Cardiovasc Intervent Radiol 2012 ; 35 : 636–644. [CrossRef] [PubMed] [Google Scholar]
  7. Ohta S, Nitta N, Takahashi M, et al. Degradable gelatin microspheres as an embolic agent: an experimental study in a rabbit renal model. Korean J Radiol 2007 ; 8 : 418–428. [CrossRef] [PubMed] [Google Scholar]
  8. Ohta S, Nitta N, Watanabe S, et al. Gelatin microspheres: correlation between embolic effect/degradability and cross-linkage/particle size. Cardiovasc Intervent Radiol 2013 ; 36 : 1105–1111. [CrossRef] [PubMed] [Google Scholar]
  9. Tabata Y, Ikada Y. Synthesis of gelatin microspheres containing interferon. Pharm Res 1989 ; 6 : 422–427. [CrossRef] [PubMed] [Google Scholar]
  10. Weng L, Le HC, Talaie R, Golzarian J. Bioresorbable hydrogel microspheres for transcatheter embolization: preparation and in vitro evaluation. J Vasc Interv Radiol 2011 ; 22 : 1464–1470. [CrossRef] [PubMed] [Google Scholar]
  11. Weng L, Rusten M, Talaie R, et al. Calibrated bioresorbable microspheres: a preliminary study on the level of occlusion and arterial distribution in a rabbit kidney model. J Vasc Interv Radiol 2013 ; 24 : 1567–1575. [CrossRef] [PubMed] [Google Scholar]
  12. Weng L, Seelig D, Rostamzadeh P, Golzarian J. Calibrated bioresorbable microspheres as an embolic agent: an experimental study in a rabbit renal model. J Vasc Interv Radiol 2015 ; 26 : 1887–1894. [CrossRef] [PubMed] [Google Scholar]
  13. Weng L, Le HC, Lin J, Golzarian J. Doxorubicin loading and eluting characteristics of bioresorbable hydrogel microspheres: in vitro study. Int J Pharm 2011 ; 409 : 185–193. [CrossRef] [PubMed] [Google Scholar]
  14. Weng L, Rostamzadeh P, Nooryshokry N, et al. In vitro and in vivo evaluation of biodegradable embolic microspheres with tunable anticancer drug release. Acta Biomater 2013 ; 9 : 6823–6833. [CrossRef] [PubMed] [Google Scholar]
  15. Schwarz A, Zhang H. Embolization using degradable crosslinked hydrogels. Brevet WO/03/094930, novembre 2003. [Google Scholar]
  16. Schwarz A, Zhang H, Metcalfe A, et al. Transcatheter embolization using degradable crosslinked hydrogels. Biomaterials 2004 ; 25 : 5209–5215. [CrossRef] [PubMed] [Google Scholar]
  17. Brandom D, Schmid E, Zeltinger J, et al. Inherently radiopaque polymeric products for embolotherapy. Brevet WO/2005/030268, avril 2005. [Google Scholar]
  18. Louguet S, Verret V, Bédouet L, et al. Poly(ethylene glycol) methacrylate hydrolyzable microspheres for transient vascular embolization. Acta Biomater 2014 ; 10 : 1194–1205. [CrossRef] [PubMed] [Google Scholar]
  19. Bédouet L, Verret V, Louguet S, et al. Anti-angiogenic drug delivery from hydrophilic resorbable embolization microspheres: an in vitro study with sunitinib and bevacizumab. Int J Pharm 2015 ; 484 : 218–227. [CrossRef] [PubMed] [Google Scholar]
  20. Maeda N, Verret V, Moine L, et al. Targeting and recanalization after embolization with calibrated resorbable microspheres versus hand-cut gelatin sponge particles in a porcine kidney model. J Vasc Interv Radiol 2013 ; 24 : 1391–1398. [CrossRef] [PubMed] [Google Scholar]
  21. Verret V, Pelage JP, Wassef M, et al. A novel resorbable embolization microsphere for transient uterine artery occlusion: a comparative study with trisacryl-gelatin microspheres in the sheep model. J Vasc Interv Radiol 2014 ; 25 : 1759–1766. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.