Free Access
Issue
Med Sci (Paris)
Volume 33, Number 1, Janvier 2017
Matériaux pour la médecine de demain
Page(s) 32 - 38
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20173301006
Published online 25 January 2017
  1. Préparations parentérales-Implants. Pharmacopée Européenne 8.4, 2014 : 5013–5015. [Google Scholar]
  2. Hornez JC, Chai F, Monchau F, et al. Biological and physico-chemical assessment of hydroxyapatite (HA) with different porosity. Biomol Eng 2007 ; 24 : 505–509. [CrossRef] [PubMed] [Google Scholar]
  3. Touzet S, Ferri J, Wojcik T, Raoul G. Complications of calvarial bone harvesting for maxillofacial reconstructions. J Craniofac Surg 2011 ; 22 : 178–181. [CrossRef] [PubMed] [Google Scholar]
  4. Romanò CL, Romanò D, Logoluso N, Drago L. Bone and joint infections in adults: a comprehensive classification proposal. Eur Orthop Traumatol 2011 ; 1 : 207–217. [CrossRef] [PubMed] [Google Scholar]
  5. Flury BB, Elzi L, Kolbe M, et al. Is switching to an oral antibiotic regimen safe after 2 weeks of intravenous treatment for primary bacterial vertebral osteomyelitis? BMC Infect Dis 2014 ; 14 : 226. [CrossRef] [PubMed] [Google Scholar]
  6. Chai F, Hornez JC, Blanchemain N, et al. Antibacterial activation of hydroxyapatite (HA) with controlled porosity by different antibiotics. Biomol Eng 2007 ; 24 : 510–514. [CrossRef] [PubMed] [Google Scholar]
  7. Leprêtre S, Chai F, Hornez JC, et al. Prolonged local antibiotics delivery from hydroxyapatite functionalized with cyclodextrin polymers. Biomaterials 2009 ; 30 : 6086–6093. [CrossRef] [PubMed] [Google Scholar]
  8. Schuessele A, Mayr H, Tessmar J, Goepferich A. Enhanced bone morphogenetic protein-2 performance on hydroxyapatite ceramic surfaces. J Biomed Mater Res A 2009 ; 90 : 959–971. [CrossRef] [PubMed] [Google Scholar]
  9. Lee WH, Loo CY, Rohanizadeh R. A review of chemical surface modification of bioceramics: effects on protein adsorption and cellular response. Colloids Surf B Biointerfaces 2014 ; 122 : 823–834. [CrossRef] [PubMed] [Google Scholar]
  10. Xu Q, Czernuszka JT. Controlled release of amoxicillin from hydroxyapatite-coated poly(lactic-co-glycoloc acid) microspheres. J Controlled Release 2008 ; 127 : 146–153. [CrossRef] [Google Scholar]
  11. Liu H, Li H, Cheng W, et al. Novel injectable calcium phosphate/chitosan composites for bone substitute materials. Acta Biomater 2006 ; 2 : 557–565. [CrossRef] [PubMed] [Google Scholar]
  12. Berger J, Reist M, Mayer JM, et al. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 2004 ; 57 : 19–34. [CrossRef] [PubMed] [Google Scholar]
  13. Rinaudo M. Chitin and chitosan: properties and applications. Prog Polym Sci 2006 ; 31 : 603–632. [CrossRef] [Google Scholar]
  14. Palao-Suaya R, Gómez-Mascaraque LG, Aguilara MR, et al. Self-assembling polymer systems for advanced treatment of cancer and inflammation. Progr Polymer Science 2016 ; 53 : 207–248. [CrossRef] [Google Scholar]
  15. Bhattarai N, Gunn J, Zhang M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 2010 ; 62 : 83–99. [CrossRef] [PubMed] [Google Scholar]
  16. Muzzarelli RAA. Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohydr Polym 2009 ; 77 : 1–9. [CrossRef] [Google Scholar]
  17. Aubert-Viard F, Martin A, Chai F, et al. Chitosan finishing nonwoven textiles loaded with silver and iodide for antibacterial wound dressing applications. Biomed Mater 2015 ; 10 : 015023. [CrossRef] [PubMed] [Google Scholar]
  18. Stone GW, Ellis SG, Cox DA, et al. A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. N Engl J Med 2004 ; 350 : 221–231. [CrossRef] [PubMed] [Google Scholar]
  19. Kastrati A, Mehilli J, Pache J, et al. Analysis of 14 trials comparing sirolimus-eluting stents with bare-metal stents. N Engl J Med 2007 ; 356 : 1030–1039. [CrossRef] [PubMed] [Google Scholar]
  20. Finn AV, Kolodgie FD, Harnek J, et al. Differential response of delayed healing and persistent inflammation at sites of overlapping sirolimus- or paclitaxel-eluting stents. Circulation 2005 ; 112 : 270–278. [CrossRef] [PubMed] [Google Scholar]
  21. Virmani R, Guagliumi G, Farb A, et al. Localized hypersensitivity and late coronary thrombosis secondary to a sirolimus-eluting stent: should we be cautious? Circulation 2004 ; 109 : 701–705. [CrossRef] [PubMed] [Google Scholar]
  22. Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007 ; 318 : 426–430. [CrossRef] [PubMed] [Google Scholar]
  23. Weng Y, Song Q, Zhou Y, et al. Immobilization of selenocystamine on TiO2 surfaces for in situ catalytic generation of nitric oxide and potential application in intravascular stents. Biomaterials 2011 ; 32 : 1253–1263. [CrossRef] [PubMed] [Google Scholar]
  24. Chien CY, Tsai WB. Poly(dopamine)-assisted immobilization of Arg-Gly-Asp peptides, hydroxyapatite, and bone morphogenic protein-2 on titanium to improve the osteogenesis of bone marrow stem cells. ACS Appl Mater Interfaces 2013 ; 5 : 6975–6983. [CrossRef] [Google Scholar]
  25. Poh CK, Shi Z, Lim TY, et al. The effect of VEGF functionalization of titanium on endothelial cells in vitro. Biomaterials 2010 ; 31 : 1578–1585. [CrossRef] [PubMed] [Google Scholar]
  26. Sobocinski J, Laure W, Taha M, et al. Mussel inspired coating of a biocompatible cyclodextrin based polymer onto CoCr vascular stents. ACS Appl Mater Interfaces 2014 ; 6 : 3575–3586. [CrossRef] [Google Scholar]
  27. Pérez-Anes A, Gargouri M, Laure W, et al. Bioinspired titanium drug eluting platforms based on a Poly-β-cyclodextrin-chitosan layer-by-layer self-assembly targeting infections. ACS Appl Mater Interfaces 2015 ; 7 : 12882–12893. [CrossRef] [Google Scholar]
  28. Jaschke B, Michaelis C, Milz S, et al. Local statin therapy differentially interferes with smooth muscle and endothelial cell proliferation and reduces neointima on a drug-eluting stent platform. Cardiovasc Res 2005 ; 68 : 483–492. [CrossRef] [PubMed] [Google Scholar]
  29. Beckman JA, Creager MA. The nonlipid effects of statins on endothelial function. Trends Cardiovasc Med 2006 ; 16 : 156–162. [CrossRef] [PubMed] [Google Scholar]
  30. Jacobson JR, Barnard JW, Grigoryev DN, et al. Simvastatin attenuates vascular leak and inflammation in murine inflammatory lung injury. Am J Physiol Lung Cell Mol Physiol 2005 ; 288 : 1026–1032. [CrossRef] [Google Scholar]
  31. Juhn S, Rybak L. Labyrinthine barriers and cochlear homeostasis. Acta Otolaryngol 1981 ; 91 : 529–534. [CrossRef] [PubMed] [Google Scholar]
  32. Leary Swan EE, Mescher MJ, Sewell WF, et al. Advanced inner ear drug delivery for auditory applications. Adv Drug Deliv Rev 2008 ; 60 : 1583–1599. [CrossRef] [PubMed] [Google Scholar]
  33. Gehrke M, Sircoglou J, Vincent C, et al. How to adjust dexamethasone mobility in silicone matrices: a quantitative treatment. Eur J Pharm Biopharm 2016 ; 100 : 27–37. [CrossRef] [PubMed] [Google Scholar]
  34. Gehrke M, Sircoglou J, Gnansia D, et al. Ear cubes for local controlled drug delivery to the inner ear. Int J Pharm 2016 ; 509 : 85–94. [CrossRef] [PubMed] [Google Scholar]
  35. El Kechai N, Agnely F, Mamelle E, et al. Recent advances in local drug delivery to the inner ear. Int J Pharm 2015 ; 494 : 83–101. [CrossRef] [PubMed] [Google Scholar]
  36. Krenzlin S, Vincent C, Munzke L, et al. Pedictability of drug release from cochlear implants. J Control Rel 2012 ; 159 : 60–68. [CrossRef] [Google Scholar]
  37. Douchement D, Terranti A, Lamblin J, et al. Dexamethasone eluting electrodes for cochlear implantation: Effect on residual hearing. Cochlear Implants Int 2015 ; 16 : 195–200. [CrossRef] [PubMed] [Google Scholar]
  38. Pascale D, Gordon J, Lamster I, et al. Concentration of doxycycline in human gingival fluid. J Clin Periodontol 1986 ; 13 : 841–844. [CrossRef] [PubMed] [Google Scholar]
  39. Greenstein G, Tonetti M. The role of controlled drug delivery for periodontitis. J Periodontol 2000 ; 71 : 125–140. [CrossRef] [Google Scholar]
  40. Schwach-Abdellaoui K, Vivien-Castioni N, Gurny R. Local delivery of antimicrobial agents for the treatment of periodontal diseases. Eur J Pharm Biopharm 2000 ; 50 : 83–99. [CrossRef] [PubMed] [Google Scholar]
  41. Bonito AJ, Lux L, Lohr KN. Impact of local adjuncts to scaling and root planing in periodontal disease therapy: a systematic review. J Periodontol 2005 ; 76 : 1227–1236. [CrossRef] [PubMed] [Google Scholar]
  42. ANSM. Recommandations de bonnes pratiques. Prescription des antibiotiques en pratique bucco-dentaire, juillet 2011 (http://ansm.sante.fr/var/ansm_site/storage/original/application/753c041773b2cebeab1ec25bdba06d33.pdf). [Google Scholar]
  43. Do MP, Neut C, Delcourt E, et al. In situ forming implants for periodontitis treatment with improved adhesive properties. Eur J Pharm Biopharm 2014 ; 88 : 342–350. [CrossRef] [PubMed] [Google Scholar]
  44. Do MP, Neut C, Metz H, et al. Mechanistic analysis of PLGA/HPMC-based in-situ forming implants for periodontitis treatment. Eur J Pharm Biopharm 2015 ; 94 : 273–283. [CrossRef] [PubMed] [Google Scholar]
  45. Do MP, Neut C, Metz H, et al. In-situ forming composite implants for periodontitis treatment: How the formulation determines system performance. Int J Pharm 2015 ; 486 : 38–51. [CrossRef] [PubMed] [Google Scholar]
  46. Jordana F, Le Visage C, Weiss P. Substituts osseux. Med Sci (Paris) 2017 ; 33 : 60–65. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.