Free Access
Issue
Med Sci (Paris)
Volume 33, Number 1, Janvier 2017
Matériaux pour la médecine de demain
Page(s) 39 - 45
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20173301007
Published online 25 January 2017
  1. Mac Chesney B. Global medical device market size, growth, and trends by therapeutic area (2009-2017), 1st ed. DeciBio, 2014 : 102 p. [Google Scholar]
  2. De Smedt M. Les prothèses du ligament croisé anterieur : analyse d’un échec. Acta Orthopaedica Belgica 1998 ; 64 : 422–433. [PubMed] [Google Scholar]
  3. Guidoin MF, Marois Y, Bejui J, et al. Analysis of retrieved polymer fiber based replacements for the ACL. Biomaterials 2000 ; 21 : 2461–2474. [CrossRef] [PubMed] [Google Scholar]
  4. Goodship AE, Cooke PH The influence of a biomechanically matched composite cruciate ligament prosthesis on subsequent joint function and degenerative change: an experimental-study. J Biomech 1987 ; 20 : 810. [Google Scholar]
  5. Vieira AC, Guedes RM, Marques AT Development of ligament tissue biodegradable devices: a review. J Biomech 2009 ; 42 : 2421–2430. [CrossRef] [PubMed] [Google Scholar]
  6. Marumo K, Saito M, Yamagishi T, Fujii K The ligamentization process in human anterior cruciate ligament reconstruction with autogenous patellar and hamstring tendons: a biochemical study. Am J Sport Med 2005 ; 33 : 1166–1173. [CrossRef] [Google Scholar]
  7. Lyu SP, Untereker D Degradability of polymers for implantable biomedical devices. Int J Mol Sci 2009 ; 10 : 4033–4065. [Google Scholar]
  8. Biondi M, Ungaro F, Quaglia F, Netti PA Controlled drug delivery in tissue engineering. Adv Drug Deliv Rev 2008 ; 60 : 229–242. [CrossRef] [PubMed] [Google Scholar]
  9. Kretlow JD, Klouda L, Mikos AG Injectable matrices and scaffolds for drug delivery in tissue engineering. Adv Drug Deliv Rev 2007 ; 59 : 263–273. [CrossRef] [PubMed] [Google Scholar]
  10. Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS. Polymeric scaffolds in tissue engineering application: a review. Int J Polymer Science 2011. Article ID 290602, 19 pages, doi: 10.1155/2011/290602. [Google Scholar]
  11. Langer R, Tirrell DA Designing materials for biology and medicine. Nature 2004 ; 428 : 487–492. [CrossRef] [PubMed] [Google Scholar]
  12. Folliguet TA, Rucker-Martin C, Pavoine C, et al. Adult cardiac myocytes survive and remain excitable during long-term culture on synthetic supports. J Thorac Cardiovasc Surg 2001 ; 121 : 510–519. [CrossRef] [PubMed] [Google Scholar]
  13. Surrao DC, Fan JCY, Waldman SD, Amsden BG A crimp-like microarchitecture improves tissue production in fibrous ligament scaffolds in response to mechanical stimuli. Acta Biomaterialia 2012 ; 8 : 3704–3713. [CrossRef] [PubMed] [Google Scholar]
  14. Surrao DC, Waldman SD, Amsden BG Biomimetic poly(lactide) based fibrous scaffolds for ligament tissue engineering. Acta Biomaterialia 2012 ; 8 : 3997–4006. [CrossRef] [PubMed] [Google Scholar]
  15. Fernandez J, Etxeberria A, Ugartemendia JM, et al. Effects of chain microstructures on mechanical behavior and aging of a poly(L-lactide-co-epsilon-caprolactone) biomedical thermoplastic-elastomer. J Mech Behav Biomed Mater 2012 ; 12 : 29–38. [Google Scholar]
  16. Lipik VT, Kong JF, Chattopadhyay S, et al. Thermoplastic biodegradable elastomers based on epsilon-caprolactone and L-lactide block co-polymers: a new synthetic approach. Acta Biomaterialia 2010 ; 6 : 4261–4270. [CrossRef] [PubMed] [Google Scholar]
  17. Zhang Z, Grijpma DW, Feijen J Thermoplastic elastomers based on poly(lactide)-poly (trimethylene carbonate-co-caprolactone)-poly(lactide) triblock copolymers and their stereocomplexes. J Control Release 2006 ; 116 : E29–E31. [CrossRef] [PubMed] [Google Scholar]
  18. Leroy A, Pinese C, Bony C, et al. Investigation on the properties of linear PLA-poloxamer and star PLA-poloxamine copolymers for temporary biomedical applications. Mater Sci Eng C Mater Biol Appl 2013 ; 33 : 4133–4139. [CrossRef] [PubMed] [Google Scholar]
  19. Leroy A, Nottelet B, Bony C, et al. PLA-poloxamer/poloxamine copolymers for ligament tissue engineering: sound macromolecular design for degradable scaffolds and MSC differentiation. Biomater Sci 2015 ; 3 : 617–626. [CrossRef] [PubMed] [Google Scholar]
  20. Li SM, Garreau H, Vert M Structure property relationships in the case of the degradation of massive aliphatic poly-(alpha-hydroxy acids) in aqueous-media. 1. Poly(Dl-lactic acid). J Mater Sci Mater Med 1990 ; 1 : 123–130. [Google Scholar]
  21. Vert M, Li SM, Garreau H Attempts to map the structure and degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids. J Biomater Sci Polym Ed 1994 ; 6 : 639–649. [CrossRef] [PubMed] [Google Scholar]
  22. Vert M, Li SM, Spenlehauer G, Guerin P Bioresorbability and biocompatibility of aliphatic polyesters. J Mater Sci Mater Med 1992 ; 3 : 432–446. [Google Scholar]
  23. Babanalbandi A, Hill DJT, Hunter DS, Kettle L Thermal stability of poly(lactic acid) before and after gamma-radiolysis. Polymer International 1999 ; 48 : 980–984. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.