Accès gratuit
Numéro
Med Sci (Paris)
Volume 33, Numéro 1, Janvier 2017
Matériaux pour la médecine de demain
Page(s) 39 - 45
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20173301007
Publié en ligne 25 janvier 2017
  1. Mac Chesney B. Global medical device market size, growth, and trends by therapeutic area (2009-2017), 1st ed. DeciBio, 2014 : 102 p. [Google Scholar]
  2. De Smedt M. Les prothèses du ligament croisé anterieur : analyse d’un échec. Acta Orthopaedica Belgica 1998 ; 64 : 422–433. [PubMed] [Google Scholar]
  3. Guidoin MF, Marois Y, Bejui J, et al. Analysis of retrieved polymer fiber based replacements for the ACL. Biomaterials 2000 ; 21 : 2461–2474. [CrossRef] [PubMed] [Google Scholar]
  4. Goodship AE, Cooke PH The influence of a biomechanically matched composite cruciate ligament prosthesis on subsequent joint function and degenerative change: an experimental-study. J Biomech 1987 ; 20 : 810. [Google Scholar]
  5. Vieira AC, Guedes RM, Marques AT Development of ligament tissue biodegradable devices: a review. J Biomech 2009 ; 42 : 2421–2430. [CrossRef] [PubMed] [Google Scholar]
  6. Marumo K, Saito M, Yamagishi T, Fujii K The ligamentization process in human anterior cruciate ligament reconstruction with autogenous patellar and hamstring tendons: a biochemical study. Am J Sport Med 2005 ; 33 : 1166–1173. [CrossRef] [Google Scholar]
  7. Lyu SP, Untereker D Degradability of polymers for implantable biomedical devices. Int J Mol Sci 2009 ; 10 : 4033–4065. [Google Scholar]
  8. Biondi M, Ungaro F, Quaglia F, Netti PA Controlled drug delivery in tissue engineering. Adv Drug Deliv Rev 2008 ; 60 : 229–242. [CrossRef] [PubMed] [Google Scholar]
  9. Kretlow JD, Klouda L, Mikos AG Injectable matrices and scaffolds for drug delivery in tissue engineering. Adv Drug Deliv Rev 2007 ; 59 : 263–273. [CrossRef] [PubMed] [Google Scholar]
  10. Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS. Polymeric scaffolds in tissue engineering application: a review. Int J Polymer Science 2011. Article ID 290602, 19 pages, doi: 10.1155/2011/290602. [Google Scholar]
  11. Langer R, Tirrell DA Designing materials for biology and medicine. Nature 2004 ; 428 : 487–492. [CrossRef] [PubMed] [Google Scholar]
  12. Folliguet TA, Rucker-Martin C, Pavoine C, et al. Adult cardiac myocytes survive and remain excitable during long-term culture on synthetic supports. J Thorac Cardiovasc Surg 2001 ; 121 : 510–519. [CrossRef] [PubMed] [Google Scholar]
  13. Surrao DC, Fan JCY, Waldman SD, Amsden BG A crimp-like microarchitecture improves tissue production in fibrous ligament scaffolds in response to mechanical stimuli. Acta Biomaterialia 2012 ; 8 : 3704–3713. [CrossRef] [PubMed] [Google Scholar]
  14. Surrao DC, Waldman SD, Amsden BG Biomimetic poly(lactide) based fibrous scaffolds for ligament tissue engineering. Acta Biomaterialia 2012 ; 8 : 3997–4006. [CrossRef] [PubMed] [Google Scholar]
  15. Fernandez J, Etxeberria A, Ugartemendia JM, et al. Effects of chain microstructures on mechanical behavior and aging of a poly(L-lactide-co-epsilon-caprolactone) biomedical thermoplastic-elastomer. J Mech Behav Biomed Mater 2012 ; 12 : 29–38. [Google Scholar]
  16. Lipik VT, Kong JF, Chattopadhyay S, et al. Thermoplastic biodegradable elastomers based on epsilon-caprolactone and L-lactide block co-polymers: a new synthetic approach. Acta Biomaterialia 2010 ; 6 : 4261–4270. [CrossRef] [PubMed] [Google Scholar]
  17. Zhang Z, Grijpma DW, Feijen J Thermoplastic elastomers based on poly(lactide)-poly (trimethylene carbonate-co-caprolactone)-poly(lactide) triblock copolymers and their stereocomplexes. J Control Release 2006 ; 116 : E29–E31. [CrossRef] [PubMed] [Google Scholar]
  18. Leroy A, Pinese C, Bony C, et al. Investigation on the properties of linear PLA-poloxamer and star PLA-poloxamine copolymers for temporary biomedical applications. Mater Sci Eng C Mater Biol Appl 2013 ; 33 : 4133–4139. [CrossRef] [PubMed] [Google Scholar]
  19. Leroy A, Nottelet B, Bony C, et al. PLA-poloxamer/poloxamine copolymers for ligament tissue engineering: sound macromolecular design for degradable scaffolds and MSC differentiation. Biomater Sci 2015 ; 3 : 617–626. [CrossRef] [PubMed] [Google Scholar]
  20. Li SM, Garreau H, Vert M Structure property relationships in the case of the degradation of massive aliphatic poly-(alpha-hydroxy acids) in aqueous-media. 1. Poly(Dl-lactic acid). J Mater Sci Mater Med 1990 ; 1 : 123–130. [Google Scholar]
  21. Vert M, Li SM, Garreau H Attempts to map the structure and degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids. J Biomater Sci Polym Ed 1994 ; 6 : 639–649. [CrossRef] [PubMed] [Google Scholar]
  22. Vert M, Li SM, Spenlehauer G, Guerin P Bioresorbability and biocompatibility of aliphatic polyesters. J Mater Sci Mater Med 1992 ; 3 : 432–446. [Google Scholar]
  23. Babanalbandi A, Hill DJT, Hunter DS, Kettle L Thermal stability of poly(lactic acid) before and after gamma-radiolysis. Polymer International 1999 ; 48 : 980–984. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.