Free Access
Issue
Med Sci (Paris)
Volume 32, Number 6-7, Juin–Juillet 2016
Page(s) 640 - 645
Section Forum
DOI https://doi.org/10.1051/medsci/20163206029
Published online 12 July 2016
  1. Gilgenkrantz H. La révolution des CRISPR est en marche. Med Sci (Paris) 2014 ; 30 : 1066–1069. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  2. Tremblay JP. CRISPR, un système qui permet de corriger ou de modifier l’expression de gènes responsables de maladies héréditaires. Med Sci (Paris) 2015 ; 31 : 1014–1022. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  3. Jordan B. CRISPR-Cas9, une nouvelle donne pour la thérapie génique. Med Sci (Paris) 2015 ; 31 : 1035–1038. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  4. Jordan B. Thérapie génique germinale, le retour ? Med Sci (Paris) 2015 ; 31 : 691–695. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  5. Koonin EV, Wolf YI. Is evolution Darwinian or/and Lamarckian? Biol Direct 2009 ; 4 : 42. [CrossRef] [PubMed] [Google Scholar]
  6. Koonin EV, Wolf YI. Just how Lamarckian is CRISPR-Cas immunity: the continuum of evolvability mechanisms. Biol Direct 2016 ; 11. [PubMed] [Google Scholar]
  7. de Lamarck JB. Philosophie zoologique. Paris : Dentu, 1809. [Google Scholar]
  8. Darwin CR. On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. London : John Murray, 1859. [Google Scholar]
  9. Luria SE, Delbruck M. Mutations of bacteria from virus sensitivity to virus resistance. Genetics 1943 ; 28 : 491–511. [PubMed] [Google Scholar]
  10. Loison L. French roots of French Neo-Lamarckisms, 1879–1985. J Hist Biol 2011 ; 44 : 713–744. [CrossRef] [PubMed] [Google Scholar]
  11. Medvedev J. Grandeur et chute de Lyssenko. Paris : Gallimard, 1971. [Google Scholar]
  12. Danchin E, Charmantier A, Champagne FA, et al. Beyond DNA: integrating inclusive inheritance into an extended theory of evolution. Nat Rev Genet 2011 ; 12 : 475–486. [CrossRef] [PubMed] [Google Scholar]
  13. Kimura M. Evolutionary rate at molecular level. Nature 1968 ; 217 : 624–626. [CrossRef] [PubMed] [Google Scholar]
  14. Lukes J, Archibald JM, Keeling PJ, et al. How a neutral evolutionary ratchet can build cellular complexity. Iubmb Life 2011 ; 63 : 528–537. [CrossRef] [PubMed] [Google Scholar]
  15. Stoltzfus A. On the possibility of constructive neutral evolution. J Mol Evol 1999 ; 49 : 169–181. [CrossRef] [PubMed] [Google Scholar]
  16. Casane D, Laurenti P. Syllogomanie moléculaire: l’ADN non codant enrichit le jeu des possibles. Med Sci (Paris) 2014 ; 30 : 1177–1183. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  17. Lecointre G. Les sciences face aux créationnismes. Versailles : Quæ, 2011. [Google Scholar]
  18. Foster PL. Adaptive mutation: the uses of adversity. Annu Rev Microbiol 1993 ; 47 : 467–504. [CrossRef] [PubMed] [Google Scholar]
  19. Foster PL. Stress-induced mutagenesis in bacteria. Crit Rev Biochem Mol Biol 2007 ; 42 : 373–397. [PubMed] [Google Scholar]
  20. Makarova KS, Grishin NV, Shabalina SA, et al. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct 2006 ; 1 : 7. [CrossRef] [PubMed] [Google Scholar]
  21. Chylinski K, Makarova KS, Charpentier E, Koonin EV. Classification and evolution of type II CRISPR-Cas systems. Nucleic Acids Res 2014 ; 42 : 6091–6105. [CrossRef] [PubMed] [Google Scholar]
  22. Krupovic M, Makarova KS, Forterre P, et al. Casposons: a new superfamily of self-synthesizing DNA transposons at the origin of prokaryotic CRISPR-Cas immunity. BMC biol 2014 ; 12 : 36. [CrossRef] [PubMed] [Google Scholar]
  23. Koonin EV, Krupovic M. Evolution of adaptive immunity from transposable elements combined with innate immune systems. Nat Rev Genet 2015 ; 16 : 184–192. [CrossRef] [PubMed] [Google Scholar]
  24. Koonin EV, Makarova KS. CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes. RNA Biol 2013 ; 10 : 679–686. [CrossRef] [PubMed] [Google Scholar]
  25. Makarova KS, Wolf YI, Alkhnbashi OS, et al. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 2015 ; 13 : 722–736. [CrossRef] [PubMed] [Google Scholar]
  26. Marraffini LA. CRISPR-Cas immunity in prokaryotes. Nature 2015 ; 526 : 55–61. [CrossRef] [PubMed] [Google Scholar]
  27. Westra ER, Buckling A, Fineran PC. CRISPR-Cas systems: beyond adaptive immunity. Nat Rev Microbiol 2014 ; 12 : 317–326. [CrossRef] [PubMed] [Google Scholar]
  28. Makarova KS, Aravind L, Wolf YI, Koonin EV. Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems. Biol Direct 2011 ; 6 : 38. [CrossRef] [PubMed] [Google Scholar]
  29. Kapitonov VV, Koonin EV. Evolution of the RAG1-RAG2 locus: both proteins came from the same transposon. Biol Direct 2015 ; 10 : 20. [CrossRef] [PubMed] [Google Scholar]
  30. Wei Y, Terns RM, Terns MP. Cas9 function and host genome sampling in Type II-A CRISPR-Cas adaptation. Genes Dev 2015 ; 29 : 356–361. [CrossRef] [PubMed] [Google Scholar]
  31. Levy A, Goren MG, Yosef I, et al. CRISPR adaptation biases explain preference for acquisition of foreign DNA. Nature 2015 ; 520 : 505–510. [CrossRef] [PubMed] [Google Scholar]
  32. Koonin EV, Makarova KS, Aravind L. Horizontal gene transfer in prokaryotes: Quantification and classification. Annu Rev Microbiol 2001 ; 55 : 709–742. [CrossRef] [PubMed] [Google Scholar]
  33. Weiss A. Lamarckian Illusions. Trends Ecol Evol 2015 ; 30 : 566–568. [CrossRef] [PubMed] [Google Scholar]
  34. Heard E, Martienssen RA. Transgenerational epigenetic inheritance: myths and mechanisms. Cell 2014 ; 157 : 95–109. [CrossRef] [PubMed] [Google Scholar]
  35. MacLean RC, Torres-Barcelo C, Moxon R. Evaluating evolutionary models of stress-induced mutagenesis in bacteria. Nat Rev Genet 2013 ; 14 : 221–227. [CrossRef] [PubMed] [Google Scholar]
  36. Labat F, Pradillon O, Garry L, et al. Mutator phenotype confers advantage in Escherichia coli chronic urinary tract infection pathogenesis. FEMS Immunol Med Microbiol 2005 ; 44 : 317–321. [CrossRef] [PubMed] [Google Scholar]
  37. Bjedov I, Tenaillon O, Gerard B, et al. Stress-induced mutagenesis in bacteria. Science 2003 ; 300 : 1404–1409. [CrossRef] [PubMed] [Google Scholar]
  38. Taddei F, Radman M, MaynardSmith J, et al. Role of mutator alleles in adaptive evolution. Nature 1997 ; 387 : 700–702. [CrossRef] [PubMed] [Google Scholar]
  39. Iwasaki YW, Siomi MC, Siomi H. PIWI-Interacting RNA: its biogenesis and functions. Annu Rev Biochem 2015 ; 84 : 405–433. [CrossRef] [PubMed] [Google Scholar]
  40. Siomi MC, Sato K, Pezic D, Aravin AA. PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Biol 2011 ; 12 : 246–258. [CrossRef] [PubMed] [Google Scholar]
  41. Andersson AF, Banfield JF. Virus population dynamics and acquired virus resistance in natural microbial communities. Science 2008 ; 320 : 1047–1050. [CrossRef] [PubMed] [Google Scholar]
  42. Bondy-Denomy J, Garcia B, Strum S, et al. Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins. Nature 2015 ; 526 : 136–139. [CrossRef] [PubMed] [Google Scholar]
  43. Junien C, Panchenko P, Fneich S, et al. Épigénétique et réponses transgénérationnelles aux impacts de l’environnement : des faits aux lacunes. Med Sci (Paris) 2016 ; 32 : 35–44. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.