Accès gratuit
Numéro
Med Sci (Paris)
Volume 32, Numéro 6-7, Juin–Juillet 2016
Page(s) 640 - 645
Section Forum
DOI https://doi.org/10.1051/medsci/20163206029
Publié en ligne 12 juillet 2016
  1. Gilgenkrantz H. La révolution des CRISPR est en marche. Med Sci (Paris) 2014 ; 30 : 1066–1069. [CrossRef] [EDP Sciences] [PubMed]
  2. Tremblay JP. CRISPR, un système qui permet de corriger ou de modifier l’expression de gènes responsables de maladies héréditaires. Med Sci (Paris) 2015 ; 31 : 1014–1022. [CrossRef] [EDP Sciences] [PubMed]
  3. Jordan B. CRISPR-Cas9, une nouvelle donne pour la thérapie génique. Med Sci (Paris) 2015 ; 31 : 1035–1038. [CrossRef] [EDP Sciences] [PubMed]
  4. Jordan B. Thérapie génique germinale, le retour ? Med Sci (Paris) 2015 ; 31 : 691–695. [CrossRef] [EDP Sciences] [PubMed]
  5. Koonin EV, Wolf YI. Is evolution Darwinian or/and Lamarckian? Biol Direct 2009 ; 4 : 42. [CrossRef] [PubMed]
  6. Koonin EV, Wolf YI. Just how Lamarckian is CRISPR-Cas immunity: the continuum of evolvability mechanisms. Biol Direct 2016 ; 11. [PubMed]
  7. de Lamarck JB. Philosophie zoologique. Paris : Dentu, 1809.
  8. Darwin CR. On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. London : John Murray, 1859.
  9. Luria SE, Delbruck M. Mutations of bacteria from virus sensitivity to virus resistance. Genetics 1943 ; 28 : 491–511.
  10. Loison L. French roots of French Neo-Lamarckisms, 1879–1985. J Hist Biol 2011 ; 44 : 713–744. [CrossRef] [PubMed]
  11. Medvedev J. Grandeur et chute de Lyssenko. Paris : Gallimard, 1971.
  12. Danchin E, Charmantier A, Champagne FA, et al. Beyond DNA: integrating inclusive inheritance into an extended theory of evolution. Nat Rev Genet 2011 ; 12 : 475–486. [CrossRef] [PubMed]
  13. Kimura M. Evolutionary rate at molecular level. Nature 1968 ; 217 : 624–626. [CrossRef] [PubMed]
  14. Lukes J, Archibald JM, Keeling PJ, et al. How a neutral evolutionary ratchet can build cellular complexity. Iubmb Life 2011 ; 63 : 528–537. [CrossRef] [PubMed]
  15. Stoltzfus A. On the possibility of constructive neutral evolution. J Mol Evol 1999 ; 49 : 169–181. [CrossRef] [PubMed]
  16. Casane D, Laurenti P. Syllogomanie moléculaire: l’ADN non codant enrichit le jeu des possibles. Med Sci (Paris) 2014 ; 30 : 1177–1183. [CrossRef] [EDP Sciences] [PubMed]
  17. Lecointre G. Les sciences face aux créationnismes. Versailles : Quæ, 2011.
  18. Foster PL. Adaptive mutation: the uses of adversity. Annu Rev Microbiol 1993 ; 47 : 467–504. [CrossRef] [PubMed]
  19. Foster PL. Stress-induced mutagenesis in bacteria. Crit Rev Biochem Mol Biol 2007 ; 42 : 373–397.
  20. Makarova KS, Grishin NV, Shabalina SA, et al. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct 2006 ; 1 : 7. [CrossRef] [PubMed]
  21. Chylinski K, Makarova KS, Charpentier E, Koonin EV. Classification and evolution of type II CRISPR-Cas systems. Nucleic Acids Res 2014 ; 42 : 6091–6105. [CrossRef] [PubMed]
  22. Krupovic M, Makarova KS, Forterre P, et al. Casposons: a new superfamily of self-synthesizing DNA transposons at the origin of prokaryotic CRISPR-Cas immunity. BMC biol 2014 ; 12 : 36. [CrossRef] [PubMed]
  23. Koonin EV, Krupovic M. Evolution of adaptive immunity from transposable elements combined with innate immune systems. Nat Rev Genet 2015 ; 16 : 184–192. [CrossRef] [PubMed]
  24. Koonin EV, Makarova KS. CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes. RNA Biol 2013 ; 10 : 679–686. [CrossRef] [PubMed]
  25. Makarova KS, Wolf YI, Alkhnbashi OS, et al. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 2015 ; 13 : 722–736. [CrossRef] [PubMed]
  26. Marraffini LA. CRISPR-Cas immunity in prokaryotes. Nature 2015 ; 526 : 55–61. [CrossRef] [PubMed]
  27. Westra ER, Buckling A, Fineran PC. CRISPR-Cas systems: beyond adaptive immunity. Nat Rev Microbiol 2014 ; 12 : 317–326. [CrossRef] [PubMed]
  28. Makarova KS, Aravind L, Wolf YI, Koonin EV. Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems. Biol Direct 2011 ; 6 : 38. [CrossRef] [PubMed]
  29. Kapitonov VV, Koonin EV. Evolution of the RAG1-RAG2 locus: both proteins came from the same transposon. Biol Direct 2015 ; 10 : 20. [CrossRef] [PubMed]
  30. Wei Y, Terns RM, Terns MP. Cas9 function and host genome sampling in Type II-A CRISPR-Cas adaptation. Genes Dev 2015 ; 29 : 356–361. [CrossRef] [PubMed]
  31. Levy A, Goren MG, Yosef I, et al. CRISPR adaptation biases explain preference for acquisition of foreign DNA. Nature 2015 ; 520 : 505–510. [CrossRef] [PubMed]
  32. Koonin EV, Makarova KS, Aravind L. Horizontal gene transfer in prokaryotes: Quantification and classification. Annu Rev Microbiol 2001 ; 55 : 709–742. [CrossRef] [PubMed]
  33. Weiss A. Lamarckian Illusions. Trends Ecol Evol 2015 ; 30 : 566–568. [CrossRef] [PubMed]
  34. Heard E, Martienssen RA. Transgenerational epigenetic inheritance: myths and mechanisms. Cell 2014 ; 157 : 95–109. [CrossRef] [PubMed]
  35. MacLean RC, Torres-Barcelo C, Moxon R. Evaluating evolutionary models of stress-induced mutagenesis in bacteria. Nat Rev Genet 2013 ; 14 : 221–227. [CrossRef] [PubMed]
  36. Labat F, Pradillon O, Garry L, et al. Mutator phenotype confers advantage in Escherichia coli chronic urinary tract infection pathogenesis. FEMS Immunol Med Microbiol 2005 ; 44 : 317–321. [CrossRef]
  37. Bjedov I, Tenaillon O, Gerard B, et al. Stress-induced mutagenesis in bacteria. Science 2003 ; 300 : 1404–1409. [CrossRef] [PubMed]
  38. Taddei F, Radman M, MaynardSmith J, et al. Role of mutator alleles in adaptive evolution. Nature 1997 ; 387 : 700–702. [CrossRef] [PubMed]
  39. Iwasaki YW, Siomi MC, Siomi H. PIWI-Interacting RNA: its biogenesis and functions. Annu Rev Biochem 2015 ; 84 : 405–433. [CrossRef] [PubMed]
  40. Siomi MC, Sato K, Pezic D, Aravin AA. PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Biol 2011 ; 12 : 246–258. [CrossRef] [PubMed]
  41. Andersson AF, Banfield JF. Virus population dynamics and acquired virus resistance in natural microbial communities. Science 2008 ; 320 : 1047–1050. [CrossRef] [PubMed]
  42. Bondy-Denomy J, Garcia B, Strum S, et al. Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins. Nature 2015 ; 526 : 136–139. [CrossRef] [PubMed]
  43. Junien C, Panchenko P, Fneich S, et al. Épigénétique et réponses transgénérationnelles aux impacts de l’environnement : des faits aux lacunes. Med Sci (Paris) 2016 ; 32 : 35–44. [CrossRef] [EDP Sciences] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.