Free Access
Med Sci (Paris)
Volume 32, Number 6-7, Juin–Juillet 2016
Page(s) 625 - 633
Section M/S Revues
Published online 12 July 2016
  1. Murillo-Carretero M, Torroglosa A, Castro C, et al. S-Nitrosylation of the epidermal growth factor receptor: a regulatory mechanism of receptor tyrosine kinase activity. Free Radic Biol Med 2009 ; 46 : 471–479. [CrossRef] [PubMed] [Google Scholar]
  2. Lam YW, Yuan Y, Isaac J, et al. Comprehensive identification and modified-site mapping of S-nitrosylated targets in prostate epithelial cells. PLoS One 2010 ; 5 : e9075. [CrossRef] [PubMed] [Google Scholar]
  3. Switzer CH, Glynn SA, Cheng RY, et al. S-nitrosylation of EGFR and Src activates an oncogenic signaling network in human basal-like breast cancer. Mol Cancer Res 2012 ; 10 : 1203–1215. [CrossRef] [PubMed] [Google Scholar]
  4. Switzer CH, Cheng RY, Ridnour LA, et al. Ets-1 is a transcriptional mediator of oncogenic nitric oxide signaling in estrogen receptor-negative breast cancer. Breast Cancer Res 2012 ; 14 : R125. [CrossRef] [PubMed] [Google Scholar]
  5. Feng X, Sun T, Bei Y, et al. S-nitrosylation of ERK inhibits ERK phosphorylation and induces apoptosis. Sci Rep 2013 ; 3 : 1814. [PubMed] [Google Scholar]
  6. Mayer IA, Arteaga CL. The PI3K/AKT pathway as a target for cancer treatment. Annu Rev Med 2016 ; 67 : 11–28. [CrossRef] [PubMed] [Google Scholar]
  7. Lopez-Rivera E, Jayaraman P, Parikh F, et al. Inducible nitric oxide synthase drives mTOR pathway activation and proliferation of human melanoma by reversible nitrosylation of TSC2. Cancer Res 2014 ; 74 : 1067–1078. [CrossRef] [Google Scholar]
  8. Yu CX, Li S, Whorton AR. Redox regulation of PTEN by S-nitrosothiols. Mol Pharmacol 2005 ; 68 : 847–854. [PubMed] [Google Scholar]
  9. Yasukawa T, Tokunaga E, Ota H, et al. S-nitrosylation-dependent inactivation of Akt/protein kinase B in insulin resistance. J Biol Chem 2005 ; 280 : 7511–7518. [CrossRef] [PubMed] [Google Scholar]
  10. Asanuma K, Huo X, Agoston A, et al. In oesophageal squamous cells, nitric oxide causes S-nitrosylation of Akt and blocks SOX2 (sex determining region Y-box 2) expression. Gut 2015 ; doi : 10.1136/gutjnl-2015-309272 [Google Scholar]
  11. Nath N, Vassell R, Chattopadhyay M, et al. Nitro-aspirin inhibits MCF-7 breast cancer cell growth: effects on COX-2 expression and Wnt/beta-catenin/TCF-4 signaling. Biochem Pharmacol 2009 ; 78 : 1298–1304. [CrossRef] [PubMed] [Google Scholar]
  12. Nath N, Kashfi K, Chen J, Rigas B. Nitric oxide-donating aspirin inhibits beta-catenin/T cell factor (TCF) signaling in SW480 colon cancer cells by disrupting the nuclear beta-catenin-TCF association. Proc Natl Acad Sci USA 2003 ; 100 : 12584–12589. [CrossRef] [Google Scholar]
  13. Razavi R, Gehrke I, Gandhirajan RK, et al. Nitric oxide-donating acetylsalicylic acid induces apoptosis in chronic lymphocytic leukemia cells and shows strong antitumor efficacy in vivo. Clin Cancer Res 2011 ; 17 : 286–293. [CrossRef] [PubMed] [Google Scholar]
  14. Kim YM, Kim TH, Chung HT, et al. Nitric oxide prevents tumor necrosis factor alpha-induced rat hepatocyte apoptosis by the interruption of mitochondrial apoptotic signaling through S-nitrosylation of caspase-8. Hepatology 2000 ; 32 : 770–778. [CrossRef] [PubMed] [Google Scholar]
  15. Kim JE, Tannenbaum SR. S-Nitrosation regulates the activation of endogenous procaspase-9 in HT-29 human colon carcinoma cells. J Biol Chem 2004 ; 279 : 9758–9764. [CrossRef] [PubMed] [Google Scholar]
  16. Benhar M, Forrester MT, Hess DT, Stamler JS. Regulated protein denitrosylation by cytosolic and mitochondrial thioredoxins. Science 2008 ; 320 : 1050–1054. [CrossRef] [PubMed] [Google Scholar]
  17. Tian H, Zhang DF, Zhang BF, et al. Melanoma differentiation associated gene-7/interleukin-24 induces caspase-3 denitrosylation to facilitate the activation of cancer cell apoptosis. J Interferon Cytokine Res 2015 ; 35 : 157–167. [CrossRef] [PubMed] [Google Scholar]
  18. Tsang AH, Lee YI, Ko HS, et al. S-nitrosylation of XIAP compromises neuronal survival in Parkinson’s disease. Proc Natl Acad Sci USA 2009 ; 106 : 4900–4905. [CrossRef] [Google Scholar]
  19. Nakamura T, Wang L, Wong CC, et al. Transnitrosylation of XIAP regulates caspase-dependent neuronal cell death. Mol Cell 2010 ; 39 : 184–195. [CrossRef] [PubMed] [Google Scholar]
  20. Azad N, Vallyathan V, Wang L, et al. S-nitrosylation of Bcl-2 inhibits its ubiquitin-proteasomal degradation. A novel anti-apoptotic mechanism that suppresses apoptosis. J Biol Chem 2006 ; 81 : 34124–34134. [CrossRef] [Google Scholar]
  21. Chanvorachote P, Nimmannit U, Wang L, et al. Nitric oxide negatively regulates Fas CD95-induced apoptosis through inhibition of ubiquitin-proteasome-mediated degradation of FLICE inhibitory protein. J Biol Chem 2005 ; 280 : 42044–42050. [CrossRef] [PubMed] [Google Scholar]
  22. Wang L, Azad N, Kongkaneramit L, et al. The Fas death signaling pathway connecting reactive oxygen species generation and FLICE inhibitory protein down-regulation. J Immunol 2008 ; 180 : 3072–3080. [CrossRef] [PubMed] [Google Scholar]
  23. Iyer AK, Azad N, Talbot S, et al. Antioxidant c-FLIP inhibits Fas ligand-induced NF-kappaB activation in a phosphatidylinositol 3-kinase/Akt-dependent manner. J Immunol 2011 ; 187 : 3256–3266. [CrossRef] [PubMed] [Google Scholar]
  24. Talbott SJ, Luanpitpong S, Stehlik C, et al. S-nitrosylation of FLICE inhibitory protein determines its interaction with RIP1 and activation of NF-κB. Cell Cycle 2014 ; 13 : 1948–1957. [CrossRef] [PubMed] [Google Scholar]
  25. Chanvorachote P, Nimmannit U, Stehlik C, et al. Nitric oxide regulates cell sensitivity to cisplatin-induced apoptosis through S-nitrosylation and inhibition of Bcl-2 ubiquitination. Cancer Res 2006 ; 66 : 6353–6360. [CrossRef] [Google Scholar]
  26. Tang Z, Bauer JA, Morrison B, Lindner DJ. Nitrosylcobalamin promotes cell death via S nitrosylation of Apo2L/TRAIL receptor DR4. Mol Cell Biol 2006 ; 26 : 5588–5594. [CrossRef] [PubMed] [Google Scholar]
  27. Leon-Bollotte L, Subramaniam S, Cauvard O, et al. S-nitrosylation of the death receptor fas promotes fas ligand-mediated apoptosis in cancer cells. Gastroenterology 2011 ; 140 : 2009–2018. [CrossRef] [PubMed] [Google Scholar]
  28. Colasanti M, Persichini T. Nitric oxide: an inhibitor of NF-kappaB/Rel system in glial cells. Brain Res Bull 2000 ; 52 : 155–161. [CrossRef] [PubMed] [Google Scholar]
  29. Marshall HE, Stamler JS. Inhibition of NF-kappa B by S-nitrosylation. Biochemistry 2001 ; 40 : 1688–1693. [CrossRef] [PubMed] [Google Scholar]
  30. Kelleher ZT, Matsumoto A, Stamler JS, Marshall HE. NOS2 regulation of NF-kappaB by S-nitrosylation of p65. J Biol Chem 2007 ; 282 : 30667–30672. [CrossRef] [PubMed] [Google Scholar]
  31. Reynaert NL, Ckless K, Korn SH, et al. Nitric oxide represses inhibitory kappaB kinase through S-nitrosylation. Proc Natl Acad Sci USA 2004 ; 101 : 8945–8950. [CrossRef] [Google Scholar]
  32. Kelleher ZT, Potts EN, Brahmajothi MV, et al. NOS2 regulation of LPS-induced airway inflammation via S-nitrosylation of NF-kB p65. Am J Physiol Lung Cell Mol Physiol 2011 ; 301 : L327–L333. [CrossRef] [PubMed] [Google Scholar]
  33. Chattopadhyay M, Goswami S, Rodes DB, et al. NO-releasing NSAIDs suppress NF-κB signaling in vitro and in vivo through S-nitrosylation. Cancer Lett 2010 ; 298 : 204–211. [CrossRef] [PubMed] [Google Scholar]
  34. Williams JL, Ji P, Ouyang N, et al. Protein nitration and nitrosylation by NO-donating aspirin in colon cancer cells: Relevance to its mechanism of action. Exp Cell Res 2011 ; 317 : 1359–1367. [CrossRef] [PubMed] [Google Scholar]
  35. Bratasz A, Selvendiran K, Wasowicz T, et al. NCX-4040, a nitric oxide-releasing aspirin, sensitizes drug-resistant human ovarian xenograft tumors to cisplatin by depletion of cellular thiols. J Transl Med 2008 ; 6 : 9. [CrossRef] [PubMed] [Google Scholar]
  36. Tesei A, Zoli W, Fabbri F, et al. NCX 4040, an NO-donating acetylsalicylic acid derivative: efficacy and mechanisms of action in cancer cells. Nitric Oxide 2008 ; 19 : 225–236. [CrossRef] [PubMed] [Google Scholar]
  37. Frederiksen LJ, Sullivan R, Maxwell LR, et al. Chemosensitization of cancer in vitro and in vivo by nitric oxide signaling. Clin Cancer Res 2007 ; 13 : 2199–2206. [CrossRef] [PubMed] [Google Scholar]
  38. Yasuda H, Yamaya M, Nakayama K, et al. Randomized phase II trial comparing nitroglycerin plus vinorelbine and cisplatin with vinorelbine and cisplatin alone in previously untreated stage IIIB/IV non-small-cell lung cancer. J Clin Oncol 2006 ; 24 : 688–694. [CrossRef] [PubMed] [Google Scholar]
  39. Siemens DR, Heaton JP, Adams MA, et al. Phase II study of nitric oxide donor for men with increasing prostate-specific antigen level after surgery or radiotherapy for prostate cancer. Urology 2009 ; 74 : 878–883. [CrossRef] [PubMed] [Google Scholar]
  40. Davidson A, Veillard AS, Tognela A, et al. A phase III randomized trial of adding topical nitroglycerin to first-line chemotherapy for advanced nonsmall-cell lung cancer: the Australasian lung cancer trials group NITRO trial. Ann Oncol 2015 ; 26 : 2280–2286. [CrossRef] [PubMed] [Google Scholar]
  41. Dingemans AM, Groen HJ, Herder GJ, et al. A randomized phase II study comparing paclitaxel-carboplatin-bevacizumab with or without nitroglycerin patches in patients with stage IV nonsquamous nonsmall-cell lung cancer: NVALT12 (NCT01171170). Ann Oncol 2015 ; 26 : 2286–2293. [CrossRef] [PubMed] [Google Scholar]
  42. Illum H, Wang DH, Dowell JE, et al. Phase I dose escalation trial of nitroglycerin in addition to 5-fluorouracil and radiation therapy for neoadjuvant treatment of operable rectal cancer. Surgery 2015 ; 158 : 460–465. [CrossRef] [PubMed] [Google Scholar]
  43. Arrieta O, Blake M, de la Mata-Moya MD, et al. Phase II study. Concurrent chemotherapy and radiotherapy with nitroglycerin in locally advanced non-small cell lung cancer. Radiother Oncol 2014 ; 111 : 311–315. [CrossRef] [PubMed] [Google Scholar]
  44. Huerta-Yepez S, Baritaki S, Baay-Guzman G, et al. Contribution of either YY1 or BclXL-induced inhibition by the NO-donor DETANONOate in the reversal of drug resistance, both in vitro and in vivo. YY1 and BclXL are overexpressed in prostate cancer. Nitric Oxide 2013 ; 29 : 17–24. [CrossRef] [PubMed] [Google Scholar]
  45. Huerta S, Baay-Guzman G, Gonzalez-Bonilla CR, et al. In vitro and in vivo sensitization of SW620 metastatic colon cancer cells to CDDP-induced apoptosis by the nitric oxide donor DETANONOate: Involvement of AIF. Nitric Oxide 2009 ; 20 : 182–194. [CrossRef] [PubMed] [Google Scholar]
  46. Gao X, Saha D, Kapur P, et al. Radiosensitization of HT-29 cells and xenografts by the nitric oxide donor DETANONOate. J Surg Oncol 2009 ; 100 : 149–158. [CrossRef] [PubMed] [Google Scholar]
  47. Kaliyaperumal K, Sharma AK, McDonald DG, et al. S-nitrosoglutathione-mediated STAT3 regulation in efficacy of radiotherapy and cisplatin therapy in head and neck squamous cell carcinoma. Redox Biol 2015 ; 6 : 41–50. [CrossRef] [PubMed] [Google Scholar]
  48. Selvendiran K, Bratasz A, Tong L, et al. NCX-4016, a nitro-derivative of aspirin, inhibits EGFR and STAT3 signaling and modulates Bcl-2 proteins in cisplatin-resistant human ovarian cancer cells and xenografts. Cell Cycle 2008 ; 7 : 81–88. [CrossRef] [PubMed] [Google Scholar]
  49. Hess DT, Stamler JS. Regulation by S-nitrosylation of protein post-translational modification. J Biol Chem 2012 ; 287 : 4411–4418. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.