Free Access
Med Sci (Paris)
Volume 32, Number 6-7, Juin–Juillet 2016
Page(s) 619 - 624
Section M/S Revues
Published online 12 July 2016
  1. Fields HL, Margolis EB. Understanding opioid reward. Trends Neurosci 2015 ; 38 : 217–225. [CrossRef] [PubMed] [Google Scholar]
  2. Johnson SW, North RA. Opioids excite dopamine neurons by hyperpolarization of local interneurons. J Neurosci 1992 ; 12 : 483–488. [PubMed] [Google Scholar]
  3. Bourdy R, Barrot M. A new control center for dopaminergic systems: pulling the VTA by the tail. Trends Neurosci 2012 ; 35 : 681–690. [CrossRef] [PubMed] [Google Scholar]
  4. Jalabert M, Bourdy R, Courtin J, et al. Neuronal circuits underlying acute morphine action on dopamine neurons. Proc Natl Acad Sci USA 2011 ; 108 : 16446–16450. [CrossRef] [Google Scholar]
  5. Perrotti LI, Bolaños CA, Choi KH, et al. ΔFosB accumulates in a GABAergic cell population in the posterior tail of the ventral tegmental area after psychostimulant treatment. Eur J Neurosci 2005 ; 21 : 2817–2824. [CrossRef] [PubMed] [Google Scholar]
  6. Kaufling J, Veinante P, Pawlowski SA, et al. Afferents to the GABAergic tail of the ventral tegmental area in the rat. J Comp Neurol 2009 ; 513 : 597–621. [CrossRef] [PubMed] [Google Scholar]
  7. Jhou TC, Geisler S, Marinelli M, et al. The mesopontine rostromedial tegmental nucleus: A structure targeted by the lateral habenula that projects to the ventral tegmental area of Tsai and substantia nigra compacta. J Comp Neurol 2009 ; 513 : 566–596. [CrossRef] [PubMed] [Google Scholar]
  8. Stamatakis AM, Stuber GD. Activation of lateral habenula inputs to the ventral midbrain promotes behavioral avoidance. Nat Neurosci 2012 ; 15 : 1105–1107. [CrossRef] [PubMed] [Google Scholar]
  9. Hong S, Jhou TC, Smith M, et al. Negative reward signals from the lateral habenula to dopamine neurons are mediated by rostromedial tegmental nucleus in primates. J Neurosci 2011 ; 31 : 11457–11471. [CrossRef] [PubMed] [Google Scholar]
  10. Kaufling J, Veinante P, Pawlowski SA, et al. γ-aminobutyric acid cells with cocaine-induced ΔFosB in the ventral tegmental area innervate mesolimbic neurons. Biol Psychiatry 2010 ; 67 : 88–92. [CrossRef] [PubMed] [Google Scholar]
  11. Jhou TC, Good CH, Rowley CS, et al. Cocaine drives aversive conditioning via delayed activation of dopamine-responsive habenular and midbrain pathways. J Neurosci 2013 ; 33 : 7501–7512. [CrossRef] [PubMed] [Google Scholar]
  12. Meye FJ, Valentinova K, Lecca S, et al. Cocaine-evoked negative symptoms require AMPA receptor trafficking in the lateral habenula. Nat Neurosci 2015 ; 18 : 376–378. [CrossRef] [PubMed] [Google Scholar]
  13. Valentinova K, Tchenio A, Meye FJ, et al. L’enfer après le plaisir : contribution de l’habénula latérale aux symptômes dépressifs des drogues. Med Sci (Paris) 2015 ; 31 : 478–481. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  14. Le Merrer J, Becker JA, Befort K, et al. Reward processing by the opioid system in the brain. Physiol Rev 2009 ; 89 : 1379–1412. [CrossRef] [PubMed] [Google Scholar]
  15. Peckys D, Landwehrmeyer GB. Expression of mu, kappa, and delta opioid receptor messenger RNA in the human CNS: a 33P in situ hybridization study. Neuroscience 1999 ; 88 : 1093–1135. [CrossRef] [PubMed] [Google Scholar]
  16. Kudo T, Konno K, Uchigashima M, et al. GABAergic neurons in the ventral tegmental area receive dual GABA/enkephalin-mediated inhibitory inputs from the bed nucleus of the stria terminalis. Eur J Neurosci 2014 ; 39 : 1796–1809. [CrossRef] [PubMed] [Google Scholar]
  17. Ragen BJ, Freeman SM, Laredo SA, et al. μ and κ opioid receptor distribution in the monogamous titi monkey (Callicebus cupreus): implications for social behavior and endocrine functioning. Neuroscience 2015 ; 290 : 421–434. [CrossRef] [PubMed] [Google Scholar]
  18. Erbs E, Faget L, Scherrer G, et al. A mu-delta opioid receptor brain atlas reveals neuronal co-occurrence in subcortical networks. Brain Struct Funct 2015 ; 220 : 677–702. [CrossRef] [PubMed] [Google Scholar]
  19. Garzón M, Pickel VM. Plasmalemmal mu-opioid receptor distribution mainly in nondopaminergic neurons in the rat ventral tegmental area. Synapse 2001 ; 41 : 311–328. [CrossRef] [PubMed] [Google Scholar]
  20. Lecca S, Melis M, Luchicchi A, et al. Effects of drugs of abuse on putative rostromedial tegmental neurons, inhibitory afferents to midbrain dopamine cells. Neuropsychopharmacology 2011 ; 36 : 589–602. [CrossRef] [PubMed] [Google Scholar]
  21. Kaufling J, Aston-Jones G. Persistent adaptations in afferents to ventral tegmental dopamine neurons after opiate withdrawal. J Neurosci 2015 ; 35 : 10290–10303. [CrossRef] [PubMed] [Google Scholar]
  22. Matsui A, Williams JT. Opioid-sensitive GABA inputs from rostromedial tegmental nucleus synapse onto midbrain dopamine neurons. J Neurosci 2011 ; 31 : 17729–17735. [CrossRef] [PubMed] [Google Scholar]
  23. Matsui A, Jarvie BC, Robinson BG, et al. Separate GABA afferents to dopamine neurons mediate acute action of opioids, development of tolerance, and expression of withdrawal. Neuron 2014 ; 82 : 1346–1356. [CrossRef] [PubMed] [Google Scholar]
  24. Mazei-Robison MS, Nestler EJ. Opiate-induced molecular and cellular plasticity of ventral tegmental area and locus coeruleus catecholamine neurons. Cold Spring Harb Perspect Med 2012 ; 2 : a012070. [PubMed] [Google Scholar]
  25. Georges F, Le Moine C, Aston-Jones G. No effect of morphine on ventral tegmental dopamine neurons during withdrawal. J Neurosci 2006 ; 26 : 5720–5726. [CrossRef] [PubMed] [Google Scholar]
  26. Bromberg-Martin ES, Matsumoto M, Hikosaka O. Dopamine in motivational control: rewarding, aversive, and alerting. Neuron 2010 ; 68 : 815–834. [CrossRef] [PubMed] [Google Scholar]
  27. Pichon S, Vuilleumier P. Neuro-imagerie et neuroscience des émotions. Med Sci (Paris) 2011 ; 27 : 763–770. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  28. Schultz W, Dayan P, Montague PR. A neural substrate of prediction and reward. Science 1997 ; 275 : 1593–1599. [CrossRef] [PubMed] [Google Scholar]
  29. Jhou TC, Fields HL, Baxter MG, et al. The rostromedial tegmental nucleus (RMTg), a GABAergic afferent to midbrain dopamine neurons, encodes aversive stimuli and inhibits motor responses. Neuron 2009 ; 61 : 786–800. [CrossRef] [PubMed] [Google Scholar]
  30. Sescousse G. Addiction aux jeux d’argent : apport des neurosciences et de la neuro-imagerie. Med Sci (Paris) 2015 ; 31 : 784–791. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  31. Vialou V. Dépression et regulation de l’activité dopaminergique. Med Sci (Paris) 2013 ; 29 : 473–477. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.