Accès gratuit
Numéro
Med Sci (Paris)
Volume 32, Numéro 6-7, Juin–Juillet 2016
Page(s) 619 - 624
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20163206026
Publié en ligne 12 juillet 2016
  1. Fields HL, Margolis EB. Understanding opioid reward. Trends Neurosci 2015 ; 38 : 217–225. [CrossRef] [PubMed]
  2. Johnson SW, North RA. Opioids excite dopamine neurons by hyperpolarization of local interneurons. J Neurosci 1992 ; 12 : 483–488. [PubMed]
  3. Bourdy R, Barrot M. A new control center for dopaminergic systems: pulling the VTA by the tail. Trends Neurosci 2012 ; 35 : 681–690. [CrossRef] [PubMed]
  4. Jalabert M, Bourdy R, Courtin J, et al. Neuronal circuits underlying acute morphine action on dopamine neurons. Proc Natl Acad Sci USA 2011 ; 108 : 16446–16450. [CrossRef]
  5. Perrotti LI, Bolaños CA, Choi KH, et al. ΔFosB accumulates in a GABAergic cell population in the posterior tail of the ventral tegmental area after psychostimulant treatment. Eur J Neurosci 2005 ; 21 : 2817–2824. [CrossRef] [PubMed]
  6. Kaufling J, Veinante P, Pawlowski SA, et al. Afferents to the GABAergic tail of the ventral tegmental area in the rat. J Comp Neurol 2009 ; 513 : 597–621. [CrossRef] [PubMed]
  7. Jhou TC, Geisler S, Marinelli M, et al. The mesopontine rostromedial tegmental nucleus: A structure targeted by the lateral habenula that projects to the ventral tegmental area of Tsai and substantia nigra compacta. J Comp Neurol 2009 ; 513 : 566–596. [CrossRef] [PubMed]
  8. Stamatakis AM, Stuber GD. Activation of lateral habenula inputs to the ventral midbrain promotes behavioral avoidance. Nat Neurosci 2012 ; 15 : 1105–1107. [CrossRef] [PubMed]
  9. Hong S, Jhou TC, Smith M, et al. Negative reward signals from the lateral habenula to dopamine neurons are mediated by rostromedial tegmental nucleus in primates. J Neurosci 2011 ; 31 : 11457–11471. [CrossRef] [PubMed]
  10. Kaufling J, Veinante P, Pawlowski SA, et al. γ-aminobutyric acid cells with cocaine-induced ΔFosB in the ventral tegmental area innervate mesolimbic neurons. Biol Psychiatry 2010 ; 67 : 88–92. [CrossRef] [PubMed]
  11. Jhou TC, Good CH, Rowley CS, et al. Cocaine drives aversive conditioning via delayed activation of dopamine-responsive habenular and midbrain pathways. J Neurosci 2013 ; 33 : 7501–7512. [CrossRef] [PubMed]
  12. Meye FJ, Valentinova K, Lecca S, et al. Cocaine-evoked negative symptoms require AMPA receptor trafficking in the lateral habenula. Nat Neurosci 2015 ; 18 : 376–378. [CrossRef] [PubMed]
  13. Valentinova K, Tchenio A, Meye FJ, et al. L’enfer après le plaisir : contribution de l’habénula latérale aux symptômes dépressifs des drogues. Med Sci (Paris) 2015 ; 31 : 478–481. [CrossRef] [EDP Sciences] [PubMed]
  14. Le Merrer J, Becker JA, Befort K, et al. Reward processing by the opioid system in the brain. Physiol Rev 2009 ; 89 : 1379–1412. [CrossRef] [PubMed]
  15. Peckys D, Landwehrmeyer GB. Expression of mu, kappa, and delta opioid receptor messenger RNA in the human CNS: a 33P in situ hybridization study. Neuroscience 1999 ; 88 : 1093–1135. [CrossRef] [PubMed]
  16. Kudo T, Konno K, Uchigashima M, et al. GABAergic neurons in the ventral tegmental area receive dual GABA/enkephalin-mediated inhibitory inputs from the bed nucleus of the stria terminalis. Eur J Neurosci 2014 ; 39 : 1796–1809. [CrossRef] [PubMed]
  17. Ragen BJ, Freeman SM, Laredo SA, et al. μ and κ opioid receptor distribution in the monogamous titi monkey (Callicebus cupreus): implications for social behavior and endocrine functioning. Neuroscience 2015 ; 290 : 421–434. [CrossRef] [PubMed]
  18. Erbs E, Faget L, Scherrer G, et al. A mu-delta opioid receptor brain atlas reveals neuronal co-occurrence in subcortical networks. Brain Struct Funct 2015 ; 220 : 677–702. [CrossRef] [PubMed]
  19. Garzón M, Pickel VM. Plasmalemmal mu-opioid receptor distribution mainly in nondopaminergic neurons in the rat ventral tegmental area. Synapse 2001 ; 41 : 311–328. [CrossRef] [PubMed]
  20. Lecca S, Melis M, Luchicchi A, et al. Effects of drugs of abuse on putative rostromedial tegmental neurons, inhibitory afferents to midbrain dopamine cells. Neuropsychopharmacology 2011 ; 36 : 589–602. [CrossRef] [PubMed]
  21. Kaufling J, Aston-Jones G. Persistent adaptations in afferents to ventral tegmental dopamine neurons after opiate withdrawal. J Neurosci 2015 ; 35 : 10290–10303. [CrossRef] [PubMed]
  22. Matsui A, Williams JT. Opioid-sensitive GABA inputs from rostromedial tegmental nucleus synapse onto midbrain dopamine neurons. J Neurosci 2011 ; 31 : 17729–17735. [CrossRef] [PubMed]
  23. Matsui A, Jarvie BC, Robinson BG, et al. Separate GABA afferents to dopamine neurons mediate acute action of opioids, development of tolerance, and expression of withdrawal. Neuron 2014 ; 82 : 1346–1356. [CrossRef] [PubMed]
  24. Mazei-Robison MS, Nestler EJ. Opiate-induced molecular and cellular plasticity of ventral tegmental area and locus coeruleus catecholamine neurons. Cold Spring Harb Perspect Med 2012 ; 2 : a012070. [PubMed]
  25. Georges F, Le Moine C, Aston-Jones G. No effect of morphine on ventral tegmental dopamine neurons during withdrawal. J Neurosci 2006 ; 26 : 5720–5726. [CrossRef] [PubMed]
  26. Bromberg-Martin ES, Matsumoto M, Hikosaka O. Dopamine in motivational control: rewarding, aversive, and alerting. Neuron 2010 ; 68 : 815–834. [CrossRef] [PubMed]
  27. Pichon S, Vuilleumier P. Neuro-imagerie et neuroscience des émotions. Med Sci (Paris) 2011 ; 27 : 763–770. [CrossRef] [EDP Sciences] [PubMed]
  28. Schultz W, Dayan P, Montague PR. A neural substrate of prediction and reward. Science 1997 ; 275 : 1593–1599. [CrossRef] [PubMed]
  29. Jhou TC, Fields HL, Baxter MG, et al. The rostromedial tegmental nucleus (RMTg), a GABAergic afferent to midbrain dopamine neurons, encodes aversive stimuli and inhibits motor responses. Neuron 2009 ; 61 : 786–800. [CrossRef] [PubMed]
  30. Sescousse G. Addiction aux jeux d’argent : apport des neurosciences et de la neuro-imagerie. Med Sci (Paris) 2015 ; 31 : 784–791. [CrossRef] [EDP Sciences] [PubMed]
  31. Vialou V. Dépression et regulation de l’activité dopaminergique. Med Sci (Paris) 2013 ; 29 : 473–477. [CrossRef] [EDP Sciences] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.