Free Access
Issue
Med Sci (Paris)
Volume 32, Number 6-7, Juin–Juillet 2016
Page(s) 612 - 618
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20163206025
Published online 12 July 2016
  1. Morgan DA, Ruscetti FW, Gallo R. Selective in vivo growth of T lymphocytes from normal human bone marrows. Science 1976 ; 193 : 1007–1008. [CrossRef] [PubMed] [Google Scholar]
  2. Taniguchi T, Matsui H, Fujita T, et al. Structure and expression of a cloned cDNA for human interleukin 2. Nature 1983 ; 302 : 305–310. [CrossRef] [PubMed] [Google Scholar]
  3. Rochman Y, Spolski R, Leonard WJ. New insights into the regulation of T cells by gamma-c family cytokines. Nat Rev Immunol 2009 ; 9 : 480–490. [CrossRef] [PubMed] [Google Scholar]
  4. Waldmann TA, Goldman C, Top L, et al. The interleukin-2 receptor: a target for immunotherapy. Ann NY Acad Sci 1993 ; 685 : 603–610. [CrossRef] [Google Scholar]
  5. Sadlack B, Merz H, Schorle H, et al. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell 1993 ; 75 : 253–261. [CrossRef] [PubMed] [Google Scholar]
  6. Suzuki H, Kündig TM, Furlonger C, et al. Deregulated T cell activation and autoimmunity in mice lacking interleukin-2 receptor β. Science 1995 ; 268 : 1472–1476. [CrossRef] [PubMed] [Google Scholar]
  7. Willerford DM, Chen J, Ferry JA, et al. Interleukin-2 receptor α chain regulates the size and content of the peripheral lymphoid compartment. Immunity 3 : 521–530. [PubMed] [Google Scholar]
  8. Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995 ; 155 : 1151–1164. [PubMed] [Google Scholar]
  9. Malek TR, Yu A, Vincek V, et al. CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rβ-deficient mice. Implications for the nonredundant function of IL-2. Immunity 2002 ; 17 : 167–178. [CrossRef] [PubMed] [Google Scholar]
  10. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003 ; 299 : 1057–1061. [CrossRef] [PubMed] [Google Scholar]
  11. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003 ; 4 : 330–336. [CrossRef] [PubMed] [Google Scholar]
  12. Snow JW, Abraham N, Ma MC, et al. Loss of tolerance and autoimmunity affecting multiple organs in STAT5A/5B-deficient mice. J Immunol 2003 ; 171 : 5042–5050. [PubMed] [Google Scholar]
  13. Baecher-Allan C, Brown JA, Freeman GJ, Hafler DA. CD4+CD25high regulatory cells in Human peripheral blood. J Immunol 2001 ; 167 : 1245–1253. [PubMed] [Google Scholar]
  14. Jonuleit H, Schmitt E, Stassen M, et al. Identification and functional characterization of human CD4+CD25+ T cells with regulatory properties isolated from peripheral blood. J Exp Med 2001 ; 193 : 1285–1294. [CrossRef] [PubMed] [Google Scholar]
  15. Moraes-Vasconcelos D, Costa-Carvalho BT, Torgerson TR, Ochs HD. Primary immune deficiency disorders presenting as autoimmune diseases: IPEX and APECED. J Clin Immunol 2008 ; 28 (suppl 1) : 11–19. [CrossRef] [Google Scholar]
  16. Roifman CM. Human IL-2 receptor α chain deficiency. Pediatr Res 2000 ; 48 : 6–11. [CrossRef] [PubMed] [Google Scholar]
  17. Zhang H, Chua KS, Guimond M, et al. Lymphopenia and interleukin-2 therapy alter homeostasis of CD4+CD25+ regulatory T cells. Nat Med 2005 ; 11 : 1238–1243. [CrossRef] [PubMed] [Google Scholar]
  18. Ahmadzadeh M, Rosenberg SA. IL-2 administration increases CD4+ CD25hi Foxp3+ regulatory T cells in cancer patients. Blood 2006 ; 107 : 2409–2414. [CrossRef] [PubMed] [Google Scholar]
  19. Vang KB, Yang J, Mahmud SA, et al. IL-2, -7, and -15, but not thymic stromal lymphopoeitin, redundantly govern CD4+Foxp3+ regulatory T cell development. J Immunol 2008 ; 181 : 3285–3290. [CrossRef] [PubMed] [Google Scholar]
  20. Williams MA, Tyznik AJ, Bevan MJ. Interleukin-2 signals during priming are required for secondary expansion of CD8+ memory T cells. Nature 2006 ; 441 : 890–893. [CrossRef] [PubMed] [Google Scholar]
  21. Bensinger SJ, Walsh PT, Zhang J, et al. Distinct IL-2 receptor signaling pattern in CD4+CD25+ regulatory T cells. J Immunol 2004 ; 172 : 5287–5296. [CrossRef] [PubMed] [Google Scholar]
  22. Yu A, Snowhite I, Vendrame F, et al. Selective IL-2 responsiveness of regulatory T cells through multiple intrinsic mechanisms supports the use of low-dose IL-2 therapy in type 1 diabetes. Diabetes 2015 ; 64 : 2172–2183. [CrossRef] [PubMed] [Google Scholar]
  23. Giedlin MA, Zimmerman RJ. The use of recombinant human interleukin-2 in treating infectious diseases. Curr Opin Biotechnol 1993 ; 4 : 722–726. [CrossRef] [PubMed] [Google Scholar]
  24. Kovacs JA, Baseler M, Dewar RJ, et al. Increases in CD4 T lymphocytes with intermittent courses of interleukin-2 in patients with human immunodeficiency virus infection. A preliminary study. N Engl J Med 1995 ; 332 : 567–575. [CrossRef] [PubMed] [Google Scholar]
  25. Boyer O, Saadoun D, Abriol J, et al. CD4+CD25+ regulatory T-cell deficiency in patients with hepatitis C-mixed cryoglobulinemia vascuitis. Blood 2004 ; 103 : 3428–3430. [CrossRef] [PubMed] [Google Scholar]
  26. Lemoine FM, Cherai M, Giverne C, et al. Massive expansion of regulatory T-cells following interleukin 2 treatment during a phase I-II dendritic cell-based immunotherapy of metastatic renal cancer. Int J Oncol 2009 ; 35 : 569–581. [CrossRef] [PubMed] [Google Scholar]
  27. Saadoun D, Rosenzwaijg M, Joly F, et al. Regulatory T-cell responses to low-dose interleukin-2 in HCV-induced vasculitis. N Engl J Med 2011 ; 365 : 2067–2077. [CrossRef] [PubMed] [Google Scholar]
  28. Koreth J, Matsuoka K, Kim HT, et al. Interleukin-2 and regulatory T cells in graft-versus-host disease. N Engl J Med 2011 ; 365 : 2055–2066. [CrossRef] [PubMed] [Google Scholar]
  29. Castela E, Le Duff F, Butori C, et al. Effects of low-dose recombinant interleukin 2 to promote T-regulatory cells in alopecia areata. JAMA Dermatol 2014 ; 150 : 748–751. [CrossRef] [PubMed] [Google Scholar]
  30. Humrich JY, von Spee-Mayer C, Siegert E, et al. Rapid induction of clinical remission by low-dose interleukin-2 in a patient with refractory SLE. Ann Rheum Dis 2015 ; 74 : 791–792. [CrossRef] [PubMed] [Google Scholar]
  31. Hartemann A, Bensimon G, Payan CA, et al. Low-dose interleukin 2 in patients with type 1 diabetes: a Phase 1/2 randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol 2013 ; 1 : 295–305. [CrossRef] [Google Scholar]
  32. Rosenzwajg M, Churlaud G, Mallone R, et al. Low-dose interleukin-2 fosters a dose-dependent regulatory-tuned milieu in T1D patients. J Autoimmun 2015 ; 58 : 48–58. [CrossRef] [PubMed] [Google Scholar]
  33. Levin AM, Bates DL, Ring AM, et al. Exploiting a natural conformational switch to engineer an interleukin-2 superkine. Nature 2012 ; 484 : 529–533. [CrossRef] [PubMed] [Google Scholar]
  34. Carmenate T, Pacios A, Enamorado M, et al. Human IL-2 mutein with higher antitumor efficacy than wild type IL-2. J Immunol 2013 ; 190 : 6230–6238. [CrossRef] [PubMed] [Google Scholar]
  35. Krieg C, Létourneau S, Pantaleo G, Boyman O. Improved IL-2 immunotherapy by selective stimulation of IL-2 receptors on lymphocytes and endothelial cells. Proc Natl Acad Sci USA 2010 ; 107 : 11906–11911. [CrossRef] [Google Scholar]
  36. Tamzalit F, Barbieux L, Plet A, et al. IL-15.IL-15Rα complex shedding following trans-presentation is essential for the survival of IL-15 responding NK and T cells. Proc Natl Acad Sci USA 2014 ; 111 : 8565–8570. [CrossRef] [Google Scholar]
  37. Waldmann TA. The shared and contrasting roles of IL2 and IL15 in the life and death of normal and neoplastic lymphocytes: implications for cancer therapy. Cancer Immunol Res 2015 ; 3 : 219–227. [CrossRef] [PubMed] [Google Scholar]
  38. Mortier E, Quéméner A, Vusio P, et al. Soluble interleukin-15 receptor alpha (IL-15R alpha)-sushi as a selective and potent agonist of IL-15 action through IL-15R beta/gamma. Hyperagonist IL-15 x IL-15R alpha fusion proteins. J Biol Chem 2006 ; 281 : 1612–1619. [CrossRef] [PubMed] [Google Scholar]
  39. Shanafelt AB, et al. (2000) A T-cell-selective interleukin 2 mutein exhibits potent antitumor activity and is well tolerated in vivo. Nat Biotechnol 2000 ; 18 : 1197–1202. [CrossRef] [PubMed] [Google Scholar]
  40. Boyman O, Kovar M, Rubinstein MP, et al. Selective stimulation of T cell subsets with antibody-cytokine immune complexes. Science 2006 ; 311 : 1924–1927. [CrossRef] [PubMed] [Google Scholar]
  41. Spangler JB, Tomala J, Luca VC, et al. Antibodies to interleukin-2 elicit selective T cell subset potentiation through distinct conformational mechanisms. Immunity 2015 ; 42 : 815–825. [CrossRef] [PubMed] [Google Scholar]
  42. Boyman O, Kolios AG, Raeber ME. Modulation of T cell responses by IL-2 and IL-2 complexes. Clin Exp Rheumatol 2015 ; 33 : S54–S57. [Google Scholar]
  43. Klatzmann D, Abbas AK. The promise of low-dose interleukin-2 therapy for autoimmune and inflammatory diseases. Nat Rev Immunol 2015 ; 15 : 283–294. [CrossRef] [PubMed] [Google Scholar]
  44. Boursier G, Siri A, de Boysson H. Actualité sur les lymphocytes T régulateurs CD4+. Med Sci (Paris) 2012 ; 28 : 646–651. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  45. Creusot RJ, Moraga I. Superkines, des cytokines aux fonctions mieux ciblées. Med Sci (Paris) 2013 ; 29 : 345–349. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.