Accès gratuit
Numéro
Med Sci (Paris)
Volume 32, Numéro 6-7, Juin–Juillet 2016
Page(s) 612 - 618
Section M/S Revues
DOI https://doi.org/10.1051/medsci/20163206025
Publié en ligne 12 juillet 2016
  1. Morgan DA, Ruscetti FW, Gallo R. Selective in vivo growth of T lymphocytes from normal human bone marrows. Science 1976 ; 193 : 1007–1008. [CrossRef] [PubMed] [Google Scholar]
  2. Taniguchi T, Matsui H, Fujita T, et al. Structure and expression of a cloned cDNA for human interleukin 2. Nature 1983 ; 302 : 305–310. [CrossRef] [PubMed] [Google Scholar]
  3. Rochman Y, Spolski R, Leonard WJ. New insights into the regulation of T cells by gamma-c family cytokines. Nat Rev Immunol 2009 ; 9 : 480–490. [CrossRef] [PubMed] [Google Scholar]
  4. Waldmann TA, Goldman C, Top L, et al. The interleukin-2 receptor: a target for immunotherapy. Ann NY Acad Sci 1993 ; 685 : 603–610. [CrossRef] [Google Scholar]
  5. Sadlack B, Merz H, Schorle H, et al. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell 1993 ; 75 : 253–261. [CrossRef] [PubMed] [Google Scholar]
  6. Suzuki H, Kündig TM, Furlonger C, et al. Deregulated T cell activation and autoimmunity in mice lacking interleukin-2 receptor β. Science 1995 ; 268 : 1472–1476. [CrossRef] [PubMed] [Google Scholar]
  7. Willerford DM, Chen J, Ferry JA, et al. Interleukin-2 receptor α chain regulates the size and content of the peripheral lymphoid compartment. Immunity 3 : 521–530. [Google Scholar]
  8. Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995 ; 155 : 1151–1164. [PubMed] [Google Scholar]
  9. Malek TR, Yu A, Vincek V, et al. CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rβ-deficient mice. Implications for the nonredundant function of IL-2. Immunity 2002 ; 17 : 167–178. [CrossRef] [PubMed] [Google Scholar]
  10. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003 ; 299 : 1057–1061. [CrossRef] [PubMed] [Google Scholar]
  11. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003 ; 4 : 330–336. [CrossRef] [PubMed] [Google Scholar]
  12. Snow JW, Abraham N, Ma MC, et al. Loss of tolerance and autoimmunity affecting multiple organs in STAT5A/5B-deficient mice. J Immunol 2003 ; 171 : 5042–5050. [PubMed] [Google Scholar]
  13. Baecher-Allan C, Brown JA, Freeman GJ, Hafler DA. CD4+CD25high regulatory cells in Human peripheral blood. J Immunol 2001 ; 167 : 1245–1253. [PubMed] [Google Scholar]
  14. Jonuleit H, Schmitt E, Stassen M, et al. Identification and functional characterization of human CD4+CD25+ T cells with regulatory properties isolated from peripheral blood. J Exp Med 2001 ; 193 : 1285–1294. [CrossRef] [PubMed] [Google Scholar]
  15. Moraes-Vasconcelos D, Costa-Carvalho BT, Torgerson TR, Ochs HD. Primary immune deficiency disorders presenting as autoimmune diseases: IPEX and APECED. J Clin Immunol 2008 ; 28 (suppl 1) : 11–19. [CrossRef] [Google Scholar]
  16. Roifman CM. Human IL-2 receptor α chain deficiency. Pediatr Res 2000 ; 48 : 6–11. [CrossRef] [PubMed] [Google Scholar]
  17. Zhang H, Chua KS, Guimond M, et al. Lymphopenia and interleukin-2 therapy alter homeostasis of CD4+CD25+ regulatory T cells. Nat Med 2005 ; 11 : 1238–1243. [CrossRef] [PubMed] [Google Scholar]
  18. Ahmadzadeh M, Rosenberg SA. IL-2 administration increases CD4+ CD25hi Foxp3+ regulatory T cells in cancer patients. Blood 2006 ; 107 : 2409–2414. [CrossRef] [PubMed] [Google Scholar]
  19. Vang KB, Yang J, Mahmud SA, et al. IL-2, -7, and -15, but not thymic stromal lymphopoeitin, redundantly govern CD4+Foxp3+ regulatory T cell development. J Immunol 2008 ; 181 : 3285–3290. [CrossRef] [PubMed] [Google Scholar]
  20. Williams MA, Tyznik AJ, Bevan MJ. Interleukin-2 signals during priming are required for secondary expansion of CD8+ memory T cells. Nature 2006 ; 441 : 890–893. [CrossRef] [PubMed] [Google Scholar]
  21. Bensinger SJ, Walsh PT, Zhang J, et al. Distinct IL-2 receptor signaling pattern in CD4+CD25+ regulatory T cells. J Immunol 2004 ; 172 : 5287–5296. [CrossRef] [PubMed] [Google Scholar]
  22. Yu A, Snowhite I, Vendrame F, et al. Selective IL-2 responsiveness of regulatory T cells through multiple intrinsic mechanisms supports the use of low-dose IL-2 therapy in type 1 diabetes. Diabetes 2015 ; 64 : 2172–2183. [CrossRef] [PubMed] [Google Scholar]
  23. Giedlin MA, Zimmerman RJ. The use of recombinant human interleukin-2 in treating infectious diseases. Curr Opin Biotechnol 1993 ; 4 : 722–726. [CrossRef] [PubMed] [Google Scholar]
  24. Kovacs JA, Baseler M, Dewar RJ, et al. Increases in CD4 T lymphocytes with intermittent courses of interleukin-2 in patients with human immunodeficiency virus infection. A preliminary study. N Engl J Med 1995 ; 332 : 567–575. [CrossRef] [PubMed] [Google Scholar]
  25. Boyer O, Saadoun D, Abriol J, et al. CD4+CD25+ regulatory T-cell deficiency in patients with hepatitis C-mixed cryoglobulinemia vascuitis. Blood 2004 ; 103 : 3428–3430. [CrossRef] [PubMed] [Google Scholar]
  26. Lemoine FM, Cherai M, Giverne C, et al. Massive expansion of regulatory T-cells following interleukin 2 treatment during a phase I-II dendritic cell-based immunotherapy of metastatic renal cancer. Int J Oncol 2009 ; 35 : 569–581. [CrossRef] [PubMed] [Google Scholar]
  27. Saadoun D, Rosenzwaijg M, Joly F, et al. Regulatory T-cell responses to low-dose interleukin-2 in HCV-induced vasculitis. N Engl J Med 2011 ; 365 : 2067–2077. [CrossRef] [PubMed] [Google Scholar]
  28. Koreth J, Matsuoka K, Kim HT, et al. Interleukin-2 and regulatory T cells in graft-versus-host disease. N Engl J Med 2011 ; 365 : 2055–2066. [CrossRef] [PubMed] [Google Scholar]
  29. Castela E, Le Duff F, Butori C, et al. Effects of low-dose recombinant interleukin 2 to promote T-regulatory cells in alopecia areata. JAMA Dermatol 2014 ; 150 : 748–751. [CrossRef] [PubMed] [Google Scholar]
  30. Humrich JY, von Spee-Mayer C, Siegert E, et al. Rapid induction of clinical remission by low-dose interleukin-2 in a patient with refractory SLE. Ann Rheum Dis 2015 ; 74 : 791–792. [CrossRef] [PubMed] [Google Scholar]
  31. Hartemann A, Bensimon G, Payan CA, et al. Low-dose interleukin 2 in patients with type 1 diabetes: a Phase 1/2 randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol 2013 ; 1 : 295–305. [CrossRef] [Google Scholar]
  32. Rosenzwajg M, Churlaud G, Mallone R, et al. Low-dose interleukin-2 fosters a dose-dependent regulatory-tuned milieu in T1D patients. J Autoimmun 2015 ; 58 : 48–58. [CrossRef] [PubMed] [Google Scholar]
  33. Levin AM, Bates DL, Ring AM, et al. Exploiting a natural conformational switch to engineer an interleukin-2 superkine. Nature 2012 ; 484 : 529–533. [CrossRef] [PubMed] [Google Scholar]
  34. Carmenate T, Pacios A, Enamorado M, et al. Human IL-2 mutein with higher antitumor efficacy than wild type IL-2. J Immunol 2013 ; 190 : 6230–6238. [CrossRef] [PubMed] [Google Scholar]
  35. Krieg C, Létourneau S, Pantaleo G, Boyman O. Improved IL-2 immunotherapy by selective stimulation of IL-2 receptors on lymphocytes and endothelial cells. Proc Natl Acad Sci USA 2010 ; 107 : 11906–11911. [CrossRef] [Google Scholar]
  36. Tamzalit F, Barbieux L, Plet A, et al. IL-15.IL-15Rα complex shedding following trans-presentation is essential for the survival of IL-15 responding NK and T cells. Proc Natl Acad Sci USA 2014 ; 111 : 8565–8570. [CrossRef] [Google Scholar]
  37. Waldmann TA. The shared and contrasting roles of IL2 and IL15 in the life and death of normal and neoplastic lymphocytes: implications for cancer therapy. Cancer Immunol Res 2015 ; 3 : 219–227. [CrossRef] [PubMed] [Google Scholar]
  38. Mortier E, Quéméner A, Vusio P, et al. Soluble interleukin-15 receptor alpha (IL-15R alpha)-sushi as a selective and potent agonist of IL-15 action through IL-15R beta/gamma. Hyperagonist IL-15 x IL-15R alpha fusion proteins. J Biol Chem 2006 ; 281 : 1612–1619. [CrossRef] [PubMed] [Google Scholar]
  39. Shanafelt AB, et al. (2000) A T-cell-selective interleukin 2 mutein exhibits potent antitumor activity and is well tolerated in vivo. Nat Biotechnol 2000 ; 18 : 1197–1202. [CrossRef] [PubMed] [Google Scholar]
  40. Boyman O, Kovar M, Rubinstein MP, et al. Selective stimulation of T cell subsets with antibody-cytokine immune complexes. Science 2006 ; 311 : 1924–1927. [CrossRef] [PubMed] [Google Scholar]
  41. Spangler JB, Tomala J, Luca VC, et al. Antibodies to interleukin-2 elicit selective T cell subset potentiation through distinct conformational mechanisms. Immunity 2015 ; 42 : 815–825. [CrossRef] [PubMed] [Google Scholar]
  42. Boyman O, Kolios AG, Raeber ME. Modulation of T cell responses by IL-2 and IL-2 complexes. Clin Exp Rheumatol 2015 ; 33 : S54–S57. [Google Scholar]
  43. Klatzmann D, Abbas AK. The promise of low-dose interleukin-2 therapy for autoimmune and inflammatory diseases. Nat Rev Immunol 2015 ; 15 : 283–294. [CrossRef] [PubMed] [Google Scholar]
  44. Boursier G, Siri A, de Boysson H. Actualité sur les lymphocytes T régulateurs CD4+. Med Sci (Paris) 2012 ; 28 : 646–651. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  45. Creusot RJ, Moraga I. Superkines, des cytokines aux fonctions mieux ciblées. Med Sci (Paris) 2013 ; 29 : 345–349. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.