Accès gratuit
Numéro |
Med Sci (Paris)
Volume 32, Numéro 6-7, Juin–Juillet 2016
|
|
---|---|---|
Page(s) | 625 - 633 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/20163206027 | |
Publié en ligne | 12 juillet 2016 |
- Murillo-Carretero M, Torroglosa A, Castro C, et al. S-Nitrosylation of the epidermal growth factor receptor: a regulatory mechanism of receptor tyrosine kinase activity. Free Radic Biol Med 2009 ; 46 : 471–479. [CrossRef] [PubMed] [Google Scholar]
- Lam YW, Yuan Y, Isaac J, et al. Comprehensive identification and modified-site mapping of S-nitrosylated targets in prostate epithelial cells. PLoS One 2010 ; 5 : e9075. [CrossRef] [PubMed] [Google Scholar]
- Switzer CH, Glynn SA, Cheng RY, et al. S-nitrosylation of EGFR and Src activates an oncogenic signaling network in human basal-like breast cancer. Mol Cancer Res 2012 ; 10 : 1203–1215. [CrossRef] [PubMed] [Google Scholar]
- Switzer CH, Cheng RY, Ridnour LA, et al. Ets-1 is a transcriptional mediator of oncogenic nitric oxide signaling in estrogen receptor-negative breast cancer. Breast Cancer Res 2012 ; 14 : R125. [CrossRef] [PubMed] [Google Scholar]
- Feng X, Sun T, Bei Y, et al. S-nitrosylation of ERK inhibits ERK phosphorylation and induces apoptosis. Sci Rep 2013 ; 3 : 1814. [PubMed] [Google Scholar]
- Mayer IA, Arteaga CL. The PI3K/AKT pathway as a target for cancer treatment. Annu Rev Med 2016 ; 67 : 11–28. [CrossRef] [PubMed] [Google Scholar]
- Lopez-Rivera E, Jayaraman P, Parikh F, et al. Inducible nitric oxide synthase drives mTOR pathway activation and proliferation of human melanoma by reversible nitrosylation of TSC2. Cancer Res 2014 ; 74 : 1067–1078. [CrossRef] [Google Scholar]
- Yu CX, Li S, Whorton AR. Redox regulation of PTEN by S-nitrosothiols. Mol Pharmacol 2005 ; 68 : 847–854. [PubMed] [Google Scholar]
- Yasukawa T, Tokunaga E, Ota H, et al. S-nitrosylation-dependent inactivation of Akt/protein kinase B in insulin resistance. J Biol Chem 2005 ; 280 : 7511–7518. [CrossRef] [PubMed] [Google Scholar]
- Asanuma K, Huo X, Agoston A, et al. In oesophageal squamous cells, nitric oxide causes S-nitrosylation of Akt and blocks SOX2 (sex determining region Y-box 2) expression. Gut 2015 ; doi : 10.1136/gutjnl-2015-309272 [Google Scholar]
- Nath N, Vassell R, Chattopadhyay M, et al. Nitro-aspirin inhibits MCF-7 breast cancer cell growth: effects on COX-2 expression and Wnt/beta-catenin/TCF-4 signaling. Biochem Pharmacol 2009 ; 78 : 1298–1304. [CrossRef] [PubMed] [Google Scholar]
- Nath N, Kashfi K, Chen J, Rigas B. Nitric oxide-donating aspirin inhibits beta-catenin/T cell factor (TCF) signaling in SW480 colon cancer cells by disrupting the nuclear beta-catenin-TCF association. Proc Natl Acad Sci USA 2003 ; 100 : 12584–12589. [CrossRef] [Google Scholar]
- Razavi R, Gehrke I, Gandhirajan RK, et al. Nitric oxide-donating acetylsalicylic acid induces apoptosis in chronic lymphocytic leukemia cells and shows strong antitumor efficacy in vivo. Clin Cancer Res 2011 ; 17 : 286–293. [CrossRef] [PubMed] [Google Scholar]
- Kim YM, Kim TH, Chung HT, et al. Nitric oxide prevents tumor necrosis factor alpha-induced rat hepatocyte apoptosis by the interruption of mitochondrial apoptotic signaling through S-nitrosylation of caspase-8. Hepatology 2000 ; 32 : 770–778. [CrossRef] [PubMed] [Google Scholar]
- Kim JE, Tannenbaum SR. S-Nitrosation regulates the activation of endogenous procaspase-9 in HT-29 human colon carcinoma cells. J Biol Chem 2004 ; 279 : 9758–9764. [CrossRef] [PubMed] [Google Scholar]
- Benhar M, Forrester MT, Hess DT, Stamler JS. Regulated protein denitrosylation by cytosolic and mitochondrial thioredoxins. Science 2008 ; 320 : 1050–1054. [CrossRef] [PubMed] [Google Scholar]
- Tian H, Zhang DF, Zhang BF, et al. Melanoma differentiation associated gene-7/interleukin-24 induces caspase-3 denitrosylation to facilitate the activation of cancer cell apoptosis. J Interferon Cytokine Res 2015 ; 35 : 157–167. [CrossRef] [PubMed] [Google Scholar]
- Tsang AH, Lee YI, Ko HS, et al. S-nitrosylation of XIAP compromises neuronal survival in Parkinson’s disease. Proc Natl Acad Sci USA 2009 ; 106 : 4900–4905. [CrossRef] [Google Scholar]
- Nakamura T, Wang L, Wong CC, et al. Transnitrosylation of XIAP regulates caspase-dependent neuronal cell death. Mol Cell 2010 ; 39 : 184–195. [CrossRef] [PubMed] [Google Scholar]
- Azad N, Vallyathan V, Wang L, et al. S-nitrosylation of Bcl-2 inhibits its ubiquitin-proteasomal degradation. A novel anti-apoptotic mechanism that suppresses apoptosis. J Biol Chem 2006 ; 81 : 34124–34134. [CrossRef] [Google Scholar]
- Chanvorachote P, Nimmannit U, Wang L, et al. Nitric oxide negatively regulates Fas CD95-induced apoptosis through inhibition of ubiquitin-proteasome-mediated degradation of FLICE inhibitory protein. J Biol Chem 2005 ; 280 : 42044–42050. [CrossRef] [PubMed] [Google Scholar]
- Wang L, Azad N, Kongkaneramit L, et al. The Fas death signaling pathway connecting reactive oxygen species generation and FLICE inhibitory protein down-regulation. J Immunol 2008 ; 180 : 3072–3080. [CrossRef] [PubMed] [Google Scholar]
- Iyer AK, Azad N, Talbot S, et al. Antioxidant c-FLIP inhibits Fas ligand-induced NF-kappaB activation in a phosphatidylinositol 3-kinase/Akt-dependent manner. J Immunol 2011 ; 187 : 3256–3266. [CrossRef] [PubMed] [Google Scholar]
- Talbott SJ, Luanpitpong S, Stehlik C, et al. S-nitrosylation of FLICE inhibitory protein determines its interaction with RIP1 and activation of NF-κB. Cell Cycle 2014 ; 13 : 1948–1957. [CrossRef] [PubMed] [Google Scholar]
- Chanvorachote P, Nimmannit U, Stehlik C, et al. Nitric oxide regulates cell sensitivity to cisplatin-induced apoptosis through S-nitrosylation and inhibition of Bcl-2 ubiquitination. Cancer Res 2006 ; 66 : 6353–6360. [CrossRef] [Google Scholar]
- Tang Z, Bauer JA, Morrison B, Lindner DJ. Nitrosylcobalamin promotes cell death via S nitrosylation of Apo2L/TRAIL receptor DR4. Mol Cell Biol 2006 ; 26 : 5588–5594. [CrossRef] [PubMed] [Google Scholar]
- Leon-Bollotte L, Subramaniam S, Cauvard O, et al. S-nitrosylation of the death receptor fas promotes fas ligand-mediated apoptosis in cancer cells. Gastroenterology 2011 ; 140 : 2009–2018. [CrossRef] [PubMed] [Google Scholar]
- Colasanti M, Persichini T. Nitric oxide: an inhibitor of NF-kappaB/Rel system in glial cells. Brain Res Bull 2000 ; 52 : 155–161. [CrossRef] [PubMed] [Google Scholar]
- Marshall HE, Stamler JS. Inhibition of NF-kappa B by S-nitrosylation. Biochemistry 2001 ; 40 : 1688–1693. [CrossRef] [PubMed] [Google Scholar]
- Kelleher ZT, Matsumoto A, Stamler JS, Marshall HE. NOS2 regulation of NF-kappaB by S-nitrosylation of p65. J Biol Chem 2007 ; 282 : 30667–30672. [CrossRef] [PubMed] [Google Scholar]
- Reynaert NL, Ckless K, Korn SH, et al. Nitric oxide represses inhibitory kappaB kinase through S-nitrosylation. Proc Natl Acad Sci USA 2004 ; 101 : 8945–8950. [CrossRef] [Google Scholar]
- Kelleher ZT, Potts EN, Brahmajothi MV, et al. NOS2 regulation of LPS-induced airway inflammation via S-nitrosylation of NF-kB p65. Am J Physiol Lung Cell Mol Physiol 2011 ; 301 : L327–L333. [CrossRef] [PubMed] [Google Scholar]
- Chattopadhyay M, Goswami S, Rodes DB, et al. NO-releasing NSAIDs suppress NF-κB signaling in vitro and in vivo through S-nitrosylation. Cancer Lett 2010 ; 298 : 204–211. [CrossRef] [PubMed] [Google Scholar]
- Williams JL, Ji P, Ouyang N, et al. Protein nitration and nitrosylation by NO-donating aspirin in colon cancer cells: Relevance to its mechanism of action. Exp Cell Res 2011 ; 317 : 1359–1367. [CrossRef] [PubMed] [Google Scholar]
- Bratasz A, Selvendiran K, Wasowicz T, et al. NCX-4040, a nitric oxide-releasing aspirin, sensitizes drug-resistant human ovarian xenograft tumors to cisplatin by depletion of cellular thiols. J Transl Med 2008 ; 6 : 9. [CrossRef] [PubMed] [Google Scholar]
- Tesei A, Zoli W, Fabbri F, et al. NCX 4040, an NO-donating acetylsalicylic acid derivative: efficacy and mechanisms of action in cancer cells. Nitric Oxide 2008 ; 19 : 225–236. [CrossRef] [PubMed] [Google Scholar]
- Frederiksen LJ, Sullivan R, Maxwell LR, et al. Chemosensitization of cancer in vitro and in vivo by nitric oxide signaling. Clin Cancer Res 2007 ; 13 : 2199–2206. [CrossRef] [PubMed] [Google Scholar]
- Yasuda H, Yamaya M, Nakayama K, et al. Randomized phase II trial comparing nitroglycerin plus vinorelbine and cisplatin with vinorelbine and cisplatin alone in previously untreated stage IIIB/IV non-small-cell lung cancer. J Clin Oncol 2006 ; 24 : 688–694. [CrossRef] [PubMed] [Google Scholar]
- Siemens DR, Heaton JP, Adams MA, et al. Phase II study of nitric oxide donor for men with increasing prostate-specific antigen level after surgery or radiotherapy for prostate cancer. Urology 2009 ; 74 : 878–883. [CrossRef] [PubMed] [Google Scholar]
- Davidson A, Veillard AS, Tognela A, et al. A phase III randomized trial of adding topical nitroglycerin to first-line chemotherapy for advanced nonsmall-cell lung cancer: the Australasian lung cancer trials group NITRO trial. Ann Oncol 2015 ; 26 : 2280–2286. [CrossRef] [PubMed] [Google Scholar]
- Dingemans AM, Groen HJ, Herder GJ, et al. A randomized phase II study comparing paclitaxel-carboplatin-bevacizumab with or without nitroglycerin patches in patients with stage IV nonsquamous nonsmall-cell lung cancer: NVALT12 (NCT01171170). Ann Oncol 2015 ; 26 : 2286–2293. [CrossRef] [PubMed] [Google Scholar]
- Illum H, Wang DH, Dowell JE, et al. Phase I dose escalation trial of nitroglycerin in addition to 5-fluorouracil and radiation therapy for neoadjuvant treatment of operable rectal cancer. Surgery 2015 ; 158 : 460–465. [CrossRef] [PubMed] [Google Scholar]
- Arrieta O, Blake M, de la Mata-Moya MD, et al. Phase II study. Concurrent chemotherapy and radiotherapy with nitroglycerin in locally advanced non-small cell lung cancer. Radiother Oncol 2014 ; 111 : 311–315. [CrossRef] [PubMed] [Google Scholar]
- Huerta-Yepez S, Baritaki S, Baay-Guzman G, et al. Contribution of either YY1 or BclXL-induced inhibition by the NO-donor DETANONOate in the reversal of drug resistance, both in vitro and in vivo. YY1 and BclXL are overexpressed in prostate cancer. Nitric Oxide 2013 ; 29 : 17–24. [CrossRef] [PubMed] [Google Scholar]
- Huerta S, Baay-Guzman G, Gonzalez-Bonilla CR, et al. In vitro and in vivo sensitization of SW620 metastatic colon cancer cells to CDDP-induced apoptosis by the nitric oxide donor DETANONOate: Involvement of AIF. Nitric Oxide 2009 ; 20 : 182–194. [CrossRef] [PubMed] [Google Scholar]
- Gao X, Saha D, Kapur P, et al. Radiosensitization of HT-29 cells and xenografts by the nitric oxide donor DETANONOate. J Surg Oncol 2009 ; 100 : 149–158. [CrossRef] [PubMed] [Google Scholar]
- Kaliyaperumal K, Sharma AK, McDonald DG, et al. S-nitrosoglutathione-mediated STAT3 regulation in efficacy of radiotherapy and cisplatin therapy in head and neck squamous cell carcinoma. Redox Biol 2015 ; 6 : 41–50. [CrossRef] [PubMed] [Google Scholar]
- Selvendiran K, Bratasz A, Tong L, et al. NCX-4016, a nitro-derivative of aspirin, inhibits EGFR and STAT3 signaling and modulates Bcl-2 proteins in cisplatin-resistant human ovarian cancer cells and xenografts. Cell Cycle 2008 ; 7 : 81–88. [CrossRef] [PubMed] [Google Scholar]
- Hess DT, Stamler JS. Regulation by S-nitrosylation of protein post-translational modification. J Biol Chem 2012 ; 287 : 4411–4418. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.