Free Access
Issue |
Med Sci (Paris)
Volume 32, Number 6-7, Juin–Juillet 2016
|
|
---|---|---|
Page(s) | 591 - 597 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/20163206022 | |
Published online | 12 July 2016 |
- Dumont NA, Bentzinger CF, Sincennes MC, Rudnicki MA. Satellite cells and skeletal muscle regeneration. Compr Physiol 2015 ; 5 : 1027–1059. [CrossRef] [PubMed] [Google Scholar]
- Bentzinger CF, Wang YX, Dumont NA, Rudnicki MA. Cellular dynamics in the muscle satellite cell niche. EMBO Rep 2013 ; 14 : 1062–1072. [CrossRef] [PubMed] [Google Scholar]
- Ginhoux F, Jung S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol 2014 ; 14 : 392–404. [CrossRef] [PubMed] [Google Scholar]
- Davies LC, Jenkins SJ, Allen JE, Taylor PR. Tissue-resident macrophages. Nat Immunol 2013 ; 14 : 986–995. [CrossRef] [PubMed] [Google Scholar]
- Brigitte M, Schilte C, Plonquet A, et al. Muscle resident macrophages control the immune cell reaction in a mouse model of notexin-induced myoinjury. Arthritis Rheum 2010 ; 62 : 268–279. [CrossRef] [PubMed] [Google Scholar]
- Soehnlein O, Lindbom L. Phagocyte partnership during the onset and resolution of inflammation. Nat Rev Immunol 2010 ; 10 : 427–439. [CrossRef] [PubMed] [Google Scholar]
- Galli SJ, Nakae S, Tsai M. Mast cells in the development of adaptive immune responses. Nat Immunol 2005 ; 6 : 135–142. [CrossRef] [PubMed] [Google Scholar]
- Duchesne E, Tremblay M-H, Côté CH. Mast cell tryptase stimulates myoblast proliferation; a mechanism relying on protease-activated receptor-2 and cyclooxygenase-2. BMC Musculoskelet Disord 2011 ; 12 : 235. [CrossRef] [PubMed] [Google Scholar]
- Duchesne E, Bouchard P, Roussel MP, Côté CH. Mast cells can regulate skeletal muscle cell proliferation by multiple mechanisms. Muscle Nerve 2013 ; 48 : 403–414. [CrossRef] [PubMed] [Google Scholar]
- Dumont N, Lepage K, Côté CH, Frenette J. Mast cells can modulate leukocyte accumulation and skeletal muscle function following hindlimb unloading. J Appl Physiol (Bethesda Md 1985) 2007 ; 103 : 97–104. [CrossRef] [Google Scholar]
- Dumas A, Pouliot M. Le neutrophile : ennemi ou ami ? Med Sci (Paris) 2009 ; 25 : 699–704. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Teixeira CFP, Zamunér SR, Zuliani JP, et al. Neutrophils do not contribute to local tissue damage, but play a key role in skeletal muscle regeneration, in mice injected with Bothrops asper snake venom. Muscle Nerve 2003 ; 28 : 449–459. [CrossRef] [PubMed] [Google Scholar]
- Iwahori Y, Ishiguro N, Shimizu T, et al. Selective neutrophil depletion with monoclonal antibodies attenuates ischemia/reperfusion injury in skeletal muscle. J Reconstr Microsurg 1998 ; 14 : 109–116. [CrossRef] [PubMed] [Google Scholar]
- Dumont N, Bouchard P, Frenette J. Neutrophil-induced skeletal muscle damage: a calculated and controlled response following hindlimb unloading and reloading. Am J Physiol Regul Integr Comp Physiol 2008 ; 295 : R1831–R1838. [CrossRef] [PubMed] [Google Scholar]
- Heredia JE, Mukundan L, Chen FM, et al. Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration. Cell 2013 ; 153 : 376–388. [CrossRef] [PubMed] [Google Scholar]
- Scapini P, Lapinet-Vera JA, Gasperini S, et al. The neutrophil as a cellular source of chemokines. Immunol Rev 2000 ; 177 : 195–203. [CrossRef] [PubMed] [Google Scholar]
- Geissmann F, Jung S, Littman DR. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 2003 ; 19 : 71–82. [CrossRef] [PubMed] [Google Scholar]
- Arnold L, Henry A, Poron F, et al. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med 2007 ; 204 : 1057–1069. [CrossRef] [PubMed] [Google Scholar]
- Auffray C, Fogg D, Garfa M, et al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 2007 ; 317 : 666–670. [CrossRef] [PubMed] [Google Scholar]
- Côté CH, Bouchard P, van Rooijen N, et al. Monocyte depletion increases local proliferation of macrophage subsets after skeletal muscle injury. BMC Musculoskelet Disord 2013 ; 14 : 359. [CrossRef] [PubMed] [Google Scholar]
- Segawa M, Fukada S, Yamamoto Y, et al. Suppression of macrophage functions impairs skeletal muscle regeneration with severe fibrosis. Exp Cell Res 2008 ; 314 : 3232–3244. [CrossRef] [PubMed] [Google Scholar]
- Dumont N, Frenette J. Macrophages protect against muscle atrophy and promote muscle recovery in vivo and in vitro: a mechanism partly dependent on the insulin-like growth factor-1 signaling molecule. Am J Pathol 2010 ; 176 : 2228–2235. [CrossRef] [PubMed] [Google Scholar]
- Ruffell D, Mourkioti F, Gambardella A, et al. A CREB-C/EBPbeta cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair. Proc Natl Acad Sci USA 2009 ; 106 : 17475–17480. [CrossRef] [Google Scholar]
- Villalta SA, Nguyen HX, Deng B, et al. Shifts in macrophage phenotypes and macrophage competition for arginine metabolism affect the severity of muscle pathology in muscular dystrophy. Hum Mol Genet 2009 ; 18 : 482–496. [CrossRef] [PubMed] [Google Scholar]
- Saclier M, Yacoub-Youssef H, Mackey AL, et al. Differentially activated macrophages orchestrate myogenic precursor cell fate during human skeletal muscle regeneration. Stem Cells 2013 ; 31 : 384–396. [CrossRef] [PubMed] [Google Scholar]
- Sonnet C, Lafuste P, Arnold L, et al. Human macrophages rescue myoblasts and myotubes from apoptosis through a set of adhesion molecular systems. J Cell Sci 2006 ; 119 : 2497–2507. [CrossRef] [PubMed] [Google Scholar]
- Villalta SA, Rosenthal W, Martinez L, et al. Regulatory T cells suppress muscle inflammation and injury in muscular dystrophy. Sci Transl Med 2014 ; 6 : 258ra142. [CrossRef] [PubMed] [Google Scholar]
- Al-Shanti N, Durcan P, Al-Dabbagh S, et al. Activated lymphocytes secretome inhibits differentiation and induces proliferation of C2C12 myoblasts. Cell Physiol Biochem 2014 ; 33 : 117–128. [CrossRef] [PubMed] [Google Scholar]
- Castiglioni A, Corna G, Rigamonti E, et al. FOXP3+ T Cells recruited to sites of sterile skeletal muscle injury regulate the fate of satellite cells and guide effective tissue regeneration. PLoS One 2015 ; 10 : e0128094. [CrossRef] [PubMed] [Google Scholar]
- Burzyn D, Kuswanto W, Kolodin D, et al. A special population of regulatory T cells potentiates muscle repair. Cell 2013 ; 155 : 1282–1295. [CrossRef] [PubMed] [Google Scholar]
- Dadgar S, Wang Z, Johnston H, et al. Asynchronous remodeling is a driver of failed regeneration in Duchenne muscular dystrophy. J Cell Biol 2014 ; 207 : 139–158. [CrossRef] [PubMed] [Google Scholar]
- Dumont NA, Bentzinger CF, Sincennes MC, Rudnicki MA. Satellite cells and skeletal muscle regeneration. Compr Physiol 2015 ; 5 : 1027–1059. [CrossRef] [PubMed] [Google Scholar]
- Hodgetts S, Radley H, Davies M, Grounds MD. Reduced necrosis of dystrophic muscle by depletion of host neutrophils, or blocking TNFalpha function with Etanercept in mdx mice. Neuromuscul Disord 2006 ; 16 : 591–602. [CrossRef] [PubMed] [Google Scholar]
- Radley HG, Grounds MD. Cromolyn administration (to block mast cell degranulation) reduces necrosis of dystrophic muscle in mdx mice. Neurobiol Dis 2006 ; 23 : 387–397. [CrossRef] [PubMed] [Google Scholar]
- Lemos DR, Babaeijandaghi F, Low M, et al. Nilotinib reduces muscle fibrosis in chronic muscle injury by promoting TNF-mediated apoptosis of fibro/adipogenic progenitors. Nat Med 2015 ; 21 : 786–794. [CrossRef] [PubMed] [Google Scholar]
- Farini A, Meregalli M, Belicchi M, et al. T and B lymphocyte depletion has a marked effect on the fibrosis of dystrophic skeletal muscles in the scid/mdx mouse. J Pathol 2007 ; 213 : 229–238. [CrossRef] [PubMed] [Google Scholar]
- Kharraz Y, Guerra J, Mann CJ, et al. Macrophage plasticity and the role of inflammation in skeletal muscle repair. Mediators Inflamm 2013 ; 2013 : 491497. [CrossRef] [PubMed] [Google Scholar]
- Dumont NA, Wang YX, Rudnicki MA. Intrinsic and extrinsic mechanisms regulating satellite cell function. Dev Camb Engl 2015 ; 142 : 1572–1581. [Google Scholar]
- Przybyla B, Gurley C, Harvey JF, et al. Aging alters macrophage properties in human skeletal muscle both at rest and in response to acute resistance exercise. Exp Gerontol 2006 ; 41 : 320–327. [CrossRef] [PubMed] [Google Scholar]
- Mahbub S, Deburghgraeve CR, Kovacs EJ. Advanced age impairs macrophage polarization. J Interferon Cytokine Res 2012 ; 32 : 18–26. [CrossRef] [PubMed] [Google Scholar]
- Paliwal P, Pishesha N, Wijaya D, Conboy IM. Age dependent increase in the levels of osteopontin inhibits skeletal muscle regeneration. Aging 2012 ; 4 : 553–566. [CrossRef] [PubMed] [Google Scholar]
- Peake J, Gatta PD, Cameron-Smith D. Aging and its effects on inflammation in skeletal muscle at rest and following exercise-induced muscle injury. Am J Physiol Regul Integr Comp Physiol 2010 ; 298 : R1485–R1495. [CrossRef] [PubMed] [Google Scholar]
- Villalta SA, Rosenberg AS, Bluestone JA. The immune system in Duchenne muscular dystrophy: Friend or foe. Rare Dis 2015 ; 3 : e1010966. [CrossRef] [PubMed] [Google Scholar]
- Chazaud B, Chrétien F, Gherardi RK. Les macrophages régulent les différentes phases de la régéneration musculaire. Med Sci (Paris) 2007 ; 23 : 794–795. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Marsolais D, Frenette J. Inflammation et réparation tendineusse. Med Sci (Paris) 2005 ; 21 : 181–186. [CrossRef] [EDP Sciences] [Google Scholar]
- De Luca A. Pre-clinical drug tests in the mdx mouse as a model of dystrophinopathies: an overview. Acta Myol 2012 ; 31 : 40–47. [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.